
SystemTest™

User’s Guide

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

SystemTest™ User’s Guide

© COPYRIGHT 2006–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
May 2006 Online only New for Version 1.0 (Release 2006a+)
September 2006 First printing Revised for Version 1.0.1 (Release 2006b)
March 2007 Online only Revised for Version 1.1 (Release 2007a)
September 2007 Second printing Revised for Version 2.0 (Release 2007b)
March 2008 Online only Revised for Version 2.1 (Release 2008a)
October 2008 Online only Revised for Version 2.2 (Release 2008b)
March 2009 Online only Revised for Version 2.3 (Release 2009a)
September 2009 Online only Revised for Version 2.4 (Release 2009b)
March 2010 Online only Revised for Version 2.5 (Release 2010a)
September 2010 Online only Revised for Version 2.6 (Release 2010b)
April 2011 Online only Revised for Version 2.6.1 (Release 2011a)
September 2011 Online only Revised for Version 2.6.2 (Release 2011b)
March 2012 Online only Revised for Version 2.6.3 (Release 2012a)
September 2012 Online only Revised for Version 2.6.4 (Release 2012b)

Contents

Getting Started

1
Product Description . 1-2
Key Features . 1-2

Overview of the SystemTest Software 1-3
Getting Familiar with the Desktop 1-3
General Desktop Features . 1-5
Setting Preferences . 1-7
Viewing Test Results . 1-9

Run Tests from the MATLAB Command Line 1-10

Create and Run a Test . 1-11

Plan a Test . 1-12

Construct a Test . 1-13
Start the SystemTest Software . 1-13
Structure a Test . 1-13
How Test Vectors and Test Variables Relate to the
MATLAB Workspace . 1-15

Create a Test Vector . 1-16
Define Test Variables . 1-19
Add Elements . 1-21
Define Pass/Fail Criteria . 1-30
Save Test Results . 1-31
Generate a Test Report . 1-34
Save a Test . 1-36

Run a Test . 1-38
Track Output . 1-38

Analyze Test Results . 1-42

v

View the Test Report . 1-42
View Test Results . 1-44

Working with Test Vectors

2
MATLAB Expression Test Vectors 2-2

Grouped Test Vectors . 2-5

Test Vectors and the MATLAB Workspace 2-13

MAT-File Test Vectors . 2-14

Randomized Test Vectors with Probability
Distributions . 2-20
Probability Distributions in Test Vectors 2-20
Create a Test Vector with Probability Distributions 2-20
View Data While Configuring the Test Vector 2-25
The Probability Distributions . 2-28
Create Test Vectors with Probability Distributions 2-36

Spreadsheet Data Test Vectors . 2-46
Introduction . 2-46
Create a Spreadsheet Data Test Vector 2-46
Configure the Spreadsheet Data Test Vector 2-50
Replace Strings . 2-53

Simulink Design Verifier Data File Test Vectors 2-55
Prerequisites . 2-55
Create SystemTest Harness from Simulink Design
Verifier . 2-55

Create a Simulink Design Verifier Test Vector 2-57
Important Usage Notes . 2-67

Create Signal Builder Block Test Vectors 2-69

vi Contents

Create a Test Case Data Test Vector 2-75

Access Test Case Data Using MATLAB Element 2-78

Edit Test Vector from within an Element 2-79

Constructing a Test

3
Test Sections . 3-2
Overview . 3-2
Pre Test . 3-2
Main Test . 3-3
Post Test . 3-3

Basic Elements . 3-5
Elements . 3-5
MATLAB Element . 3-7
Limit Check Element — General Check 3-8
Limit Check Element — Tolerance Check 3-12
IF Element . 3-15
General Plot Element . 3-16
Stop Element . 3-21
Subsection Element . 3-22

Deprecated Elements . 3-24
Converting Elements . 3-24
Scalar Plot Conversion Details . 3-26
Vector Plot Conversion Details . 3-27

Using the Simulink Element

4
Simulink Element . 4-2

vii

Before You Begin . 4-3

Configuration of a Simulink Element 4-5
Introduction . 4-5
Add a Simulink Element . 4-5
Specify the Simulink Model . 4-7
Override Simulink Model Inputs . 4-7
Map Simulink Model Outputs to Test Variables 4-13
Model Output Mappings Assistant 4-20
Edit a Test Vector or Test Variable from within the
Element . 4-21

Override Inport Block Signals . 4-22
Introduction . 4-22
Override Inport Block Signals in a Simulink Element 4-23
Inport Block Mappings Assistant . 4-27
Override Simulink Inport Blocks Using a Spreadsheet Data
Test Vector . 4-28

Map Logged Signals from a Model to Inport Blocks 4-36
Edit a Test Vector or Test Variable from within the
Element . 4-37

Simulink Model Coverage . 4-38

Use Simulink Design Verifier Test Cases 4-46

Use Signal Builder Block Test Cases 4-47

Test Cases and Signals in Simulink Element 4-48

Author Signals in the Test Case Editor

5
Signal Authoring for Test Data . 5-2
Definitions . 5-2

Author and Use Signals in Tests . 5-4

viii Contents

Create a Test Case Data Test Vector 5-6

Create Test Cases, Signals, and Buses 5-9
Navigate in the Test Case Editor . 5-9
Create Test Cases . 5-13
Add Signals to Test Cases . 5-18
Buses in the Test Case Editor . 5-23
Signal Types . 5-30

Link to Requirements in Telelogic DOORS 5-38
Introduction and Setup . 5-38
Add Requirements . 5-38
Requirements Tab . 5-41
Test Case Report . 5-44
Create Requirements Programmatically 5-46

Test Cases and Signals in SystemTest Elements 5-49
Introduction . 5-49
Simulink Element . 5-49
MATLAB Element . 5-50
General Plot Element . 5-50

Programmatic Test Case and Signal Authoring 5-56
Overview . 5-56
Load and Save Test Cases . 5-57
Edit Test Cases . 5-58
Create Signals . 5-59
Import from External Source to Test Case 5-60

Generate a Test Harness from a Model

6
Test Harness Generation . 6-2

Model Requirements for Test Harness Generation 6-3

Generate a Test Harness from Simulink 6-4

ix

Generate Test Harness at the Command Line 6-13

Use the Instrument Control Toolbox Elements

7
Instrument Control Toolbox Elements 7-2
Overview . 7-2
Access Resources . 7-2

Measure Generator’s Frequency Using Instrument
Control Toolbox . 7-4
Introduction . 7-4
Setting Up the Signal Generator . 7-5
Setting Up the Oscilloscope . 7-9
Taking the Measurement . 7-11
Saving Test Results . 7-12
Running the Test and Viewing Test Results 7-13

Use Data Acquisition Toolbox Elements

8
Data Acquisition Toolbox Test Elements 8-2

Test Voltage Regulator Using Data Acquisition
Toolbox . 8-3
Introduction . 8-3
Sending Analog Stimulus Data to the DUT 8-4
Enabling the DUT with Digital Data 8-7
Receiving Analog Response Data from the DUT 8-9
Disabling the DUT with Digital Data 8-10
Performing Data Analysis . 8-12
Defining Post Test Elements . 8-13
Saving and Viewing Test Results . 8-14

x Contents

Use the Image Acquisition Toolbox Element

9
Image Acquisition Toolbox Element 9-2

Acquire Test Data Using Image Acquisition Toolbox
Element . 9-3
Add Video Input Element to a Test 9-3
Save and View Test Results . 9-8
Run the Test . 9-9

Distributing Tests Using Parallel Computing
Toolbox Integration

10
SystemTest Software and Parallel Computing Toolbox
Integration . 10-2

Enable Distributed Testing . 10-3

Select a User Configuration . 10-5

Set Up File Dependencies . 10-7

Set Up Path Dependencies . 10-9

Distribute Iterations Across Tasks 10-12

Run a Distributed Test . 10-14

Distribute a Test . 10-17

xi

Access Test Results from MATLAB Command
Line

11
View Test Results at the Command Line 11-2
Introduction . 11-2
Accessing the Results Summary . 11-2
Accessing the dataset Array . 11-5

Manage Test Results . 11-8
Introduction . 11-8
Manage Test Results in Native Format 11-8
Manage Test Results as a Dataset Array 11-9
Plot Results Data . 11-10

Access Test Results While Test Is Running 11-15

Function Reference

12

SystemTest Hot Keys

A

Test Results Data

B
Dataset Arrays . B-2
Overview . B-2
Test Results Data . B-2
Looking at Data . B-3

Dataset Array Operations . B-5

xii Contents

Index

xiii

xiv Contents

1

Getting Started

This section explains what the SystemTest™ software is and how to use it. It
contains the following topics:

• “Product Description” on page 1-2

• “Overview of the SystemTest Software” on page 1-3

• “Run Tests from the MATLAB Command Line” on page 1-10

• “Create and Run a Test” on page 1-11

• “Plan a Test” on page 1-12

• “Construct a Test” on page 1-13

• “Run a Test” on page 1-38

• “Analyze Test Results” on page 1-42

1 Getting Started

Product Description
Manage tests and analyze results for system verification and
validation

SystemTest software lets you develop and execute tests that exercise
MATLAB® algorithms and Simulink® models. It includes predefined test
elements that let you build and maintain standard test routines. You can
map test variables into a result set for analysis.

Support for industry standards is available through DO Qualification Kit
(for DO-178).

Learn more about verification, validation, and test in Model-Based Design.

Key Features

• Develops, manages, and edits test structures using predefined test elements

• Stores tests independently of the model under test, for repeatable test
execution

• Defines pass/fail criteria for tests using Boolean constraints and tolerance
limits

• Generates random test vector values using probability distribution
functions

• Runs iterations of Simulink models on multiple processors with Parallel
Computing Toolbox™ (available separately)

• Generates reports of test execution and results

• Visualizes and analyzes multidimensional test result

1-2

http://www.mathworks.com/products/do-178/
http://www.mathworks.com/verification-validation/

Overview of the SystemTest™ Software

Overview of the SystemTest Software

In this section...

“Getting Familiar with the Desktop” on page 1-3

“General Desktop Features” on page 1-5

“Setting Preferences” on page 1-7

“Viewing Test Results” on page 1-9

Getting Familiar with the Desktop
The SystemTest software is an integrated development environment that
lets you perform all of your testing activities from one centralized location.
This section provides an overview of the SystemTest environment. For more
information about how to use the SystemTest software to build tests and run
them, see “Create and Run a Test” on page 1-11.

To get familiar with the SystemTest environment, open the SystemTest
desktop by typing systemtest at the MATLAB command line.

1-3

1 Getting Started

The desktop has a number of different panes that help you to build and run
your test.

• Test Browser— Shows the overall structure of a test. A test is made up of
Pre Test, Main Test, Save Results, and Post Test. Use the Test Browser to
add elements to your test. These elements determine what actions your
test performs.

• Test Vectors— Lets you define the parameters or test cases of your test.
The test vectors you define determine the number of iterations performed
by your test. Test vectors are automatically indexed during test execution.

• Test Variables— Lets you define variables used in the scope of your test.
Variables can serve both input and output functions in your test. You can
define variables that are declared in the Pre Test section of your test or in
the Main Test section of your test.

1-4

Overview of the SystemTest™ Software

• Properties — Shows the properties of the test or the element you are
editing. The contents of this pane change when you select a section or
element in your test.

• Elements — If open, this undocked Elements pane allows you to add
elements to your test. If not open, you can add elements using the New
button in the Test Browser.

• Resources — Lists the instrument or other external device resources
associated with the current test. This is only used if you have a license for
the Instrument Control Toolbox™ software.

• Getting Started — Shows information to help you start using the
SystemTest software. If the Getting Started page is closed, select Help >
SystemTest Getting Started to open it.

• Help— Shows help about the element or aspect of the test that is currently
selected. For the full product Help, select Help > SystemTest User’s
Guide.

• Run Status— Shows a summary of the test’s execution status.

General Desktop Features
The SystemTest desktop has a variety of features to make navigation easier.

Context Menus
Many areas of the user interface have context menus. For example, if you
right-click in the Test Vectors, Test Variables, Resources, Run Status,
Getting Started, or Desktop Help panes, you can access these context
menus.

If you have the Elements pane open, you can add elements to your test using
the context menus. If you right-click any element there, you can insert it
directly into Pre Test, Main Test, or Post Test using the Elements pane
context menus. If that section of the test already contains elements, the
inserted element will be placed below the currently selected element in that
section. You can change the order of elements in the test by using the arrow
buttons in the Test Browser, or by dragging and dropping.

1-5

1 Getting Started

Hot Keys
The SystemTest software offers various keyboard shortcuts, or hot keys, to
access certain commands via the keyboard. For example, pressing F5 is an
alternative way to run a test, and pressing Ctrl+N creates a new untitled test.

Undo/Redo Support
Undo and redo support is available through the Edit menu or on the
SystemTest toolbar. This feature allows you to undo actions you have done
throughout the desktop. The undo queue is global to the entire desktop. For
example, if you add a test vector and then perform an action in the Properties
pane, those two actions will be the last two items in the queue. The undo
order applies across all the panes in the desktop.

To use this feature, select the Edit > Undo action command, where action
is the last action you performed. Use the Undo command repeatedly to
undo multiple actions. The Edit > Redo action command will redo the last
undo you performed.

Most actions in the desktop are undoable. Some actions pertaining to the
elements that are part of the hardware toolboxes, Data Acquisition Toolbox™,
Instrument Control Toolbox, and Image Acquisition Toolbox™, cannot be
undone since they involve connections to hardware.

The following actions will clear the list of actions in the undo queue:

• Closing a test

• Opening a test

• Creating a new test

• Refreshing a Simulink model in the Simulink element

1-6

Overview of the SystemTest™ Software

Setting Preferences
You can set SystemTest preferences by selecting File > Preferences on
the SystemTest desktop. This opens the MATLAB Preferences dialog box.
Click SystemTest in the left tree if SystemTest Preferences are not showing
in the right pane.

1-7

1 Getting Started

Most Recently Used Test List
This option determines how many tests will appear on the SystemTest File
menu’s most recent files list. The default is 4 tests. If you change it to 0, no
recent tests will appear on the list. The maximum number is 9.

Test Run Options
Select Minimize SystemTest when starting a test if you want the
SystemTest desktop to minimize when a test starts running. This check box
is cleared by default.

Select Save test before running if you want the SystemTest software to
save your test before it runs. If this option is selected and you run a test
that is not yet saved, you will be prompted to name and save the test. This
check box is selected by default.

Note You can save a test any time, before or after running it, by selecting
File > Save.

Confirmation Dialog Boxes
You can also turn off confirmation dialog boxes used in the SystemTest
software in a different area of the Preferences dialog box by selecting General
> Confirmation Dialogs. Four SystemTest confirmation dialog boxes are
listed there, as shown in the figure that follows.

• Warn about using a Simulink model with an infinite simulation
stop time — Occurs if you attempt to run a test containing a Simulink
element that uses a model with an infinite simulation stop time.

• Warn about using a Simulink model with unnamed logged signals
— Occurs if you have a model that has logging enabled but has logged
signals with no name, and you use that model in a Simulink element in the
SystemTest software.

• Warn each time a new signal is added in the test case editor —
Occurs if you add a signal in the Test Case Editor.

• Warn each time a signal is deleted in the test case editor— Occurs if
you delete a signal in the Test Case Editor.

1-8

Overview of the SystemTest™ Software

Viewing Test Results
The SystemTest software allows you to view the results you have chosen to
save for your test using a workspace variable called stresults. It provides
access to the test results object, which is useful for comparing the results of
separate test runs and for postprocessing test results.

1-9

1 Getting Started

Run Tests from the MATLAB Command Line
You can run one or more SystemTest tests from the MATLAB command line,
using the strun function. This is useful for running multiple test files as a
batch or calling a test file as part of a MATLAB file.

Note If you use this feature, it is a good idea to first run the test from the
SystemTest desktop to verify that elements are not in an error state, and that
the test will run successfully, before running it via the MATLAB command
line using the strun function.

The function takes the name of your test file as a string. The test file must be
on the MATLAB path, or you can specify the full path in the string.

For example, to run a test called mytest that is on the MATLAB path, use
this syntax:

strun('mytest')

To run a test called mytest that is not on the MATLAB path, but is in a local
directory called c:\work, use this syntax:

strun('c:\work\mytest.test')

To run multiple tests, use a cell array of strings, as follows:

strun({'mytest' 'mytest2'})

Note MATLAB will remain busy while tests are executing via the strun
command. Control is returned to the MATLAB command line once all tests
execute.

If the SystemTest desktop is open when strun is called, strun leaves it open.
Otherwise, strun closes the desktop after the test runs.

For more information, see strun.

1-10

Create and Run a Test

Create and Run a Test
This example illustrates the four primary stages of testing: planning,
building, running the test, and viewing test results.

The example uses a simple MATLAB expression to emulate a scalar
measurement during each iteration of the test. The example uses an arbitrary
formula dependent on the test vector named signal to generate the Y data.
The example tests each measurement to determine if it falls within certain
specified limits. If a measurement exceeds these limits, that particular
iteration of the test fails. By default, the test fails if any iteration fails, but
you can configure other pass/fail criteria.

The following sections provide information about each stage, building the
example test along the way.

1 “Plan a Test” on page 1-12

2 “Construct a Test” on page 1-13

3 “Run a Test” on page 1-38

4 “Analyze Test Results” on page 1-42

If you prefer, instead of working through the following sections to build the
example, you can load it into the SystemTest software by running the Getting
Started with SystemTest example by entering systemtest Simple_Demo
at the MATLAB command prompt.

1-11

1 Getting Started

Plan a Test
In this first stage, you must identify what it is you want to test. The
SystemTest software lets you specify input data, such as measurements from
a model or device, and compare this input data to some predefined limits.
Based on this comparison, the SystemTest software can declare whether
a test passes or fails.

Keep the following in mind as you plan tests:

• Identify your test data and test vectors.

• Specify test limits and determine if these limits can be expressed as scalar
or matrix values. (The Limit Check element supports both scalar and
matrix data.)

• Determine what operations your test must perform. Must certain
operations happen before others?

• Determine pass/fail criteria for your test.

• Decide which test variables you want to save as test results.

After this planning, you can begin to construct your test, which is described
in “Construct a Test” on page 1-13.

1-12

Construct a Test

Construct a Test
The SystemTest interface provides a graphical integrated environment that
you can use to create and edit tests. Tests consist of elements, test vectors,
and test variables. You can use each of these entities to create a variety
of test scenarios ranging from a simple test that runs a series of elements
once to a full parameter sweep that iterates over the values of test vectors
that you define.

The following sections show how to construct a test:

In this section...

“Start the SystemTest Software” on page 1-13

“Structure a Test” on page 1-13

“How Test Vectors and Test Variables Relate to the MATLAB Workspace”
on page 1-15

“Create a Test Vector” on page 1-16

“Define Test Variables” on page 1-19

“Add Elements” on page 1-21

“Define Pass/Fail Criteria” on page 1-30

“Save Test Results” on page 1-31

“Generate a Test Report” on page 1-34

“Save a Test” on page 1-36

Start the SystemTest Software
Start by opening the SystemTest desktop by typing systemtest at the
MATLAB command line.

The SystemTest software displays the desktop on your screen. See “Overview
of the SystemTest Software” on page 1-3 for an overview.

Structure a Test
The SystemTest software divides tests into three sections.

1-13

1 Getting Started

• Pre Test — This section is used to execute test elements in order to
perform any test set-up operations, such as initializing variables, loading
data from a file, and initializing system resources. Using Pre Test
variables, you can assign an initial value to a test variable that persists
between Main Test section iterations (unless another element in Main Test
modifies the value). Pre Test is not mandatory, but it can be used if your
test requires set-up operations to be performed.

• Main Test — Main Test defines the test elements that need to be
performed across the parameter space defined by your test vectors. In this
section Main Test variables are initialized before each Main Test iteration,
which lets you assign an initial value to a test variable each time the Main
Test runs. This is useful if your test variable has a derived value such as
being indexed by a test vector or is the result of a MATLAB expression.

The number of iterations performed in the Main Test is indicated in the
Test Browser in parentheses after Main Test. Iterations specifies the
number of times the Main Test section will be run. This is determined from
the test vectors you define. The SystemTest desktop also offers a Save
Results area for you to specify which test variables you want to save as
test results at the end of each Main Test iteration.

• Post Test— In this section you can perform any cleanup work necessary
at the completion of the Main Test section, such as clearing workspace
variables, closing a file, or freeing system resources.

The following figure illustrates the structure of a test.

1-14

Construct a Test

How Test Vectors and Test Variables Relate to the
MATLAB Workspace
The SystemTest software has its own internal workspace that it uses to
manage test variables and test vectors independently. However it does
leverage the MATLAB workspace during test execution, and when using
a MATLAB element.

1-15

1 Getting Started

During test execution, SystemTest test variables and test vectors are
evaluated in the MATLAB base workspace. Then at the end of test execution,
they are cleared out and the MATLAB base workspace is restored to what it
was before the test execution.

When using a MATLAB element in the SystemTest software, you can
reference a variable in the base workspace without having to create a test
vector or test variable in the SystemTest software. However the SystemTest
software will not be aware of this data, so you could not make use of it in any
other element type or in saved results. You can only access it from a MATLAB
element. If you need to use it in other elements, you can create test variables
or test vectors in the SystemTest software.

Create a Test Vector
Test vectors are composed of values derived from a MATLAB expression. You
can use any MATLAB expression that evaluates to a 1-by-n matrix or cell
array to define your test vector. Using test vectors, you can iterate through
a range of values to see how a system performs. Test vectors constitute
parameterized testing in the SystemTest software. They are the test cases
for your test.

For tests with multiple test vectors, the product of the lengths of the test
vectors defines the number of iterations the test performs. For example, if you
define the test vector [10 20 30], the test runs three times, using a value of
10 for the first run, 20 for the second, and 30 for the final run. If you add a
second test vector with three other values, the total number of test runs would
be nine. The SystemTest software iterates through each vector in combination
with the other vector as though the test were a group of nested FOR loops—the
outermost loop being the first test vector in your table and the innermost loop
being the last test vector. TheMain Test section in the Test Browser shows
the total number of test iterations defined by your test vectors.

For the example, use the vector [pi/15:pi/15:4*pi] which defines 60 values
for our test vector ranging from pi/15 to 4*pi in pi/15 increments. To specify
this test vector:

1 Click the New Vector button in the Test Vectors pane.

The Insert Test Vector dialog box opens.

1-16

Construct a Test

2 Keep the default test vector type ofMATLAB Expression. Assign a name
to the test vector by clicking the Name field. For this example, name the
test vector signal.

3 Assign a value to the test vector by clicking the Expression field. Enter
the test vector specified above for the pi values. Click OK.

1-17

1 Getting Started

After you create the test vector, in the Test Browser pane, the Main Test
section label updates to include the number of iterations defined by the test
vector. It should say Main Test (60 Iterations).

1-18

Construct a Test

Note Grouping test vectors determines how they will be iterated through
when the test runs. For information on grouping vectors, see “Grouped Test
Vectors” on page 2-5.

Note You can also use probability distributions when you create a test
vector. For information, see “Randomized Test Vectors with Probability
Distributions” on page 2-20.

Define Test Variables
The SystemTest software uses test variables to define temporary storage
variables that a test acts on or generates. You assign test variables in the Pre
Test or Main Test sections of your test.

You can define Pre Test variables or Main Test variables. Using Pre Test
variables, you can assign an initial value to a test variable that persists
between Main Test section iterations (unless another element in Main Test
modifies the value). Pre Test is not mandatory, but it can be used if your test
requires set-up operations to be performed.

Main Test defines the test elements that need to be performed across the
parameter space defined by your test vectors. Main Test variables are
initialized before each Main Test iteration, which allows you to assign an
initial value to a test variable each time the Main Test runs. This is useful if
your test variable has a derived value such as being indexed by a test vector
or is the result of a MATLAB expression. You add elements in this section.

The example test requires three test variables:

• Y — Contains a value that will be calculated from the signal test vector
at each iteration.

• HiLimit— Contains the upper limit for Y that you do not want the signal
to exceed.

• LowLimit— Contains the lower limit for Y that you do not want the signal
to go below.

1-19

1 Getting Started

To create these test variables:

1 Click the Test Variables tab in the middle pane of the SystemTest desktop.

2 Click the New button to create a Pre Test or Main Test variable. The
Insert Test Variable dialog box opens. Leave the default value of Main
Test in the Assigned in field, to create a new Main Test variable.

3 Assign a name to the test variable by clicking the Name field and entering
the test variable name. For this example, enter Y.

4 Set the test variable’s initial value by clicking the Initial Value field and
entering a value. For the example test variable Y, enter 0. Click OK.

Note If you do not provide an initial value, it will default to empty, that
is, Var1 = []; in MATLAB code.

1-20

Construct a Test

Note Test variables are re-initialized at the start of each test iteration.
The Initial value field is blank by default when you create a test variable.
If you leave it blank, it will initialize to []. If you enter an initial value
(which can be any valid MATLAB expression), that value gets assigned in
every iteration.

5 Repeat steps 2 to 4 to create the remaining two test variables, using the
settings listed in the following table:

Variable Name Initial Value Assign in

HiLimit 1 Main Test

LowLimit -1 Main Test

Add Elements
Elements are the actions that a test performs. The SystemTest software
includes the following set of elements, listed in alphabetical order.

• General Plot — Used to plot any type of data over multiple iterations.

• IF — Implements a logic control operator.

• Limit Check — Specifies the comparison to be performed of the value(s)
under test and their expected value(s), or limit(s).

• MATLAB — Executes any MATLAB statements.

1-21

1 Getting Started

• Simulink — Runs a Simulink model. Note that you need to have a license
for Simulink to use this element.

• Stop — Implements a logic control operator.

• Subsection — Creates a new section in a test that you can use to group
elements within.

Note Some MathWorks® products, such as the Image Acquisition Toolbox,
the Data Acquisition Toolbox, and the Instrument Control Toolbox, provide
their own elements that integrate those products’ capabilities within the
SystemTest software. If you have licenses for those products, those elements
will also appear in the elements list.

You add elements to a section in your test; however, not all elements can be
added to all sections. For example, you can use a MATLAB element anywhere
within a test, but you can only use the Limit Check element in the Main
Test section.

To illustrate using elements, let’s continue with this example. This test uses
three elements in the Main Test section.

Element Description

MATLAB Use a MATLAB expression to assign data to Y that is
dependent on the test vector signal.

Limit Check Compare the value generated in the MATLAB element to
the specified limit and see if the Y test variable exceeds
the upper or lower limit you defined in your HiLimit and
LowLimit test variables.

General Plot Plot the current test variable values and see whether the
test variable exceeds the upper and lower limits.

To add these elements:

1 Select the section of the test in which you want to add the element. For this
example, click Main Test in the Test Browser.

1-22

Construct a Test

2 Specify the element you want to add to the test section. For this example,
click the New > Test Element button and select MATLAB. A MATLAB
element appears in the Main Test section of your test and the MATLAB
element property page opens in the Properties pane of the SystemTest
desktop.

1-23

1 Getting Started

3 In the Properties pane, type the following code in the MATLAB Script
edit box. This MATLAB code calculates a value for Y that is dependent
on the test vector signal.

Y = sin(signal)+ rand -.5;

During each iteration, the SystemTest software evaluates the MATLAB
expression and assigns a value to Y.

4 Add the Limit Check element to the Main Test section of the test. With
the MATLAB element selected, click the New > Test Element button,
and click Limit Check. A Limit Check element appears in the Main
Test section of the test and the Limit Check properties page opens in the
Properties pane. For this example, the Limit Check element must follow
the MATLAB element in the test.

Note You can reposition an element in a test by selecting the element and
then clicking the up and down arrows in the Test Browser toolbar. You
can also drag and drop elements within Main Test. You cannot move
elements between test sections.

1-24

Construct a Test

In the General Check tab, click the New button to add a limit check.
Notice that the Limit Check element icon in the Test Browser shows
a red x, which indicates that information is missing. The corresponding
red outlining in the Properties pane highlights any fields that require
configuration. A test cannot run unless everything is properly configured.

1-25

1 Getting Started

5 Specify the limit comparison operations in the Limit Check element.

a In the Test Variable column, click the drop-down list and select a test
variable you created in step 4. For this example, select Y.

b In the Operator column, click the drop-down list and select the
comparison you want to perform. For this example, pick the
less-than-or-equal-to operator, <=.

c In the Limit column, click the drop-down list and select the test variable
you want to compare to. For this example, select HiLimit, which is the
test variable you created earlier.

The following figure shows the configuration of this limit.

6 To add another limit comparison operation, click the New button again in
the General Check Properties pane. A new row appears below the last
limit you specified. In this new row, set Test Variable to Y, set Operator
to >=, and set Limit to LowLimit.

1-26

Construct a Test

The following figure shows the configuration of this second limit.

For each iteration of the Main Test, the MATLAB element’s expression is
evaluated and a new value assigned to Y. When the Limit Check element
runs, it determines whether the value of Y falls between the HiLimit and
LowLimit values. If Y is outside this range, the test iteration fails. The
default pass/fail criteria for the overall test passes the test only if both
expressions in the limit check evaluate to true.

7 To view the test variables as the test runs, plot the data. To add a Plot
element to the test, click the New > Test Element button, and select
General Plot. A General Plot element appears in the Main Test section,
and the properties page for the element opens in the Properties pane.

1-27

1 Getting Started

With each Main Test iteration of the test, the General Plot element updates
a figure window with data you selected.

8 Click the Add Plot button, and choose plot from the list to create a line
plot.

9 We will set up three axes. For the first axes, use the one automatically
created. Configure it as follows:

Click the arrow in Y Data Source and select Y.
Keep the default Line color of blue, and keep the default Line style
of solid.
Change Line marker to point (the first selection in the list that shows
one dot).
On the Options tab, select Keep any existing data on the figure.

10 Add the second and third axes by clicking the Add Plot button again twice
and choosing plot from the list to create a line plot.

11 Configure the second and third axes to match the following table, and using
<Iteration Number> as the X Data Source for each one and selecting

1-28

Construct a Test

the Keep any existing data on the figure option for each one. The
configured element looks like the figure following the table.

Y Data Sorce Line Color Line Style Line Marker

Y Blue Solid Point

HiLimit Red Dashed No Marker

LowLimit Black Dashed No Marker

1-29

1 Getting Started

To see the resulting plot, see “Track Output” on page 1-38.

Define Pass/Fail Criteria
You can define whether your test passes or fails by monitoring the outcome of
any or all Limit Check elements during any or all Main Test iterations. Your
test’s threshold of success can range from the passing of any Limit Check in
any single test iteration to the passing of all Limit Check elements in all test
iterations. If your test contains no Limit Check elements, there is no notion
of pass/fail and no pass/fail information is displayed. (Testing of this type
is useful for experimenting with a system or to explore its behavior rather
than validate its performance.)

You can set any of the following conditions to define when your test passes:

• All Limit Check elements pass in all test iterations.

• All Limit Check elements pass in any test iteration.

• Any Limit Check element passes in all test iterations.

• Any Limit Check element passes in any test iteration.

You can configure this behavior within the test’s Properties pane. Click the
test name in the Test Browser (named Untitled by default) to open the
test’s properties and look for the section labeled This Test Passes If.

Using the signal test example that you constructed in this section, set the test
to pass if all Limit Check elements pass in all test iterations.

1-30

Construct a Test

Save Test Results
You can save the results from the iterations of your test in a MAT-file. You
must explicitly specify which test variables to save as test results.

Note Test variables that are not saved as a test result will be lost at the end
of the test execution.

The SystemTest software lets you save results at the end of each iteration.
Before running your test, select the Save Results section in your test and
specify which test variables to save as test results. Click the New Mapping
button and then select from the drop-down list the name of the test variable
to map to a result. You can optionally specify a name for the results that you
want to save. By default, the name of the saved result is the same as the
test variable. The following figure shows the mapping of test variables to
test results.

1-31

1 Getting Started

After specifying which test variables to save as test results, specify the name
of the MAT-file to use. Using this MAT-file you can reload the test results
into the base workspace. By default for a test that is untitled, the SystemTest
software names the file Untitled_results.mat and puts the file in the same
folder as the TEST-File. To change the name or location of the MAT-file,
click the test name in the Test Browser, then click the Output Files tab in
the Properties pane.

Use the Select File Names section to name the results file. Use the Output
Folder Numbering section to select overwrite behavior. By default, each
time you run the test you overwrite this file unless you select the Create new
folder for each run option. If you select that option, a new folder is created
for each run and a new results file is created and put inside the folder. In this
case, the Outputs subfolder name is appended by successive numbers for each
test run. For example, if the folder name is MyResults, the first test run will
create MyResults\Outputs and the next test run results folder will be called
MyResults\Outputs(1), followed by MyResults\Outputs(2), etc.

1-32

Construct a Test

Use the Select Output Folder section to designate the location to save the
results file, as follows:

• Same folder as TEST-file – This default setting saves any output files to
the same location as the TEST-File. In this case your test and any output
files it generates will be in the same location. You set this location when
you select File > Save to save your test, or if prompted to save when you
close the SystemTest software.

• Same folder as the MATLAB current folder (PWD) – Save any output
files to the current working directory in MATLAB. You can see the current
working directory when you open SystemTest from MATLAB.

• Browse – Select the third option and then click the Browse button to
choose an absolute directory location for the output files. This location
should be stable and not read-only.

1-33

1 Getting Started

Note that the location you select here is also where the Test Report will be
saved if you generate one by selecting the Generate report check box.

Note If a file or folder location is read-only, you will get an error when the
test runs. For results files and Test Reports to be generated, the files and
folder locations must be writable.

Generate a Test Report
When you run your test, the test status appears in the Run Status pane.
This display contains basic information about your test:

• Time elapsed since your test started running.

• Which section your test is in.

• How many test iterations have passed or failed as defined by any limit
checks.

• Whether your test completed successfully.

• Any errors that cause your test to stop.

You can generate and save more detail about the running test by enabling the
Test Report, which is a test execution log file in HTML format. This report is
useful when you use limit checks in your test and you want to see specific test
iterations that passed or failed. For example, instead of just finding that a
test iteration failed, the report helps you determine how far a test variable
varied from the upper or lower limit you defined in a Limit Check element.
It also displays any plots that were generated. This report is also useful for
documenting and sharing your test results.

1-34

Construct a Test

To enable the Test Report:

1 Select the test name in the Test Browser, then click the Output Files
tab on the Properties pane.

2 In the Select File Names section, select the Generate report check box.

3 Use the default name or type a new name in the edit field next to the check
box.

4 Use the Select Output Folder section to designate the location to save
the Test Report:

• Same folder as TEST-file – This default setting saves any output
files to the same location as the TEST-File. In this case your test and
any output files it generates will be in the same location. You set this
location when you select File > Save to save your test, or if prompted to
save when you close the SystemTest software.

• Same folder as the MATLAB current folder (PWD) – Save any
output files to the current working directory in MATLAB. You can see the
current working directory when you open SystemTest from MATLAB.

• Browse – Select the third option and then click the Browse button to
choose an absolute directory location for the output files. This location
should be stable and not read-only.

The Test Report is stored in an Outputs subfolder in this folder, along with
all dependent files, such as plot or Simulink model snapshots. The overwrite
options you set for your test results MAT-file also apply to the file name and
folder of your report file. To learn how to change these options, see “Save
Test Results” on page 1-31 .

Note that the location you select here is also where the test results will be
saved.

Note If a file or folder location is read-only, you will get an error when the
test runs. For results files and Test Reports to be generated, the files and
folder locations must be writable.

1-35

1 Getting Started

The Test Report contains the following information about the test run,
organized by iteration in the report:

• The test description, if you entered one in the Description field of the
Properties pane of the test.

• A test summary, including start and stop times, number of iterations
completed, number of iterations that passed and failed, and final status
of the test.

• Pass/fail results of Limit Check elements, by iteration.

• Values for any saved results you captured by setting up mappings in Saved
Results, by iteration.

• Test vector values, by iteration.

• A snapshot of your model if you use a Simulink element in the test.

• A snapshot of your plot if you use a Vector Plot, Scalar Plot, or General Plot
element in your test, by iteration.

• A summary of generated files, with links to them. These can include a
Simulink model coverage report and test results.

Note Because the Test Report generates while the test is running, this
option results in the test taking longer to execute.

To see what information the report generates, see “View the Test Report”
on page 1-42.

Save a Test
You can save tests so that you can reuse them later. For example, to save
the signal test:

1 Select File > Save As to open the Save file as dialog box.

2 Select a directory location and enter mySavedTest in the File name field.

3 Click Save.

1-36

Construct a Test

The SystemTest software saves the test as mySavedTest.test and renames
your test as it appears in the Test Browser. This does not rename the test
results MAT-file or the Test Report file. Their names are controlled separately
from the name of the test, as explained in “Save Test Results” on page 1-31.

1-37

1 Getting Started

Run a Test
After you build a test, you are ready to run it. At run time, the SystemTest
software assigns values to test vectors and test variables in the order they
appear in the Test Vectors and Test Variables panes. Each test section
runs elements in the order that they appear in the Test Browser.

To execute your test, do one of the following:

• Click the Run button.

• Select Run > Run.

• Press the F5 key.

Note While a test is running, you can stop its execution by pressing Ctrl+C
or clicking the Stop button on the toolbar.

Track Output
While the test runs, the Run Status pane shows summary test output,
including start and stop times, number of iterations completed, number of
iterations that passed and failed, and final status of the test. It will also
display any error messages if the test has an error.

1-38

Run a Test

1-39

1 Getting Started

If your test includes a Plot element, the SystemTest software creates the
plot and updates the plot during each iteration. Since Limit Check elements
evaluate whether an iteration passed or failed, they directly affect the data
that appears in the Test Report and the Run Status pane.

In the example test, the plot includes the high and low limits defined in the
Limit Check element, to show which test iterations exceed the limits.

When the test is done running, the Run Status pane provides links to
generated output. The Generated Files section contains a summary of

1-40

Run a Test

generated files, with links to them, such as the Test Report, saved test
results, and the Simulink model coverage report, if your test uses the model
coverage feature.

1-41

1 Getting Started

Analyze Test Results
After the SystemTest software runs your test, you can explore the results that
are generated. This section shows how to:

• View and interpret the Test Report.

• Inspect your test results.

View the Test Report
When you enable the Test Report, the SystemTest software saves information
about each test iteration in an HTML file. To enable the Test Report, check
the Generate report option on the Output Files tab of the Properties
pane before running your test. The report contains summary information
about the test run, snapshots of any plots you used, snapshots of any models
you used, pass/fail results of Limit Check elements, and other information.
See Test Report for a full description of what the report contains.

1-42

Analyze Test Results

After a test runs, you can see the contents of this file by clicking Tools >
Test Report or using the Test Report link in the Run Status pane. The
generated output resembles the following.

1-43

1 Getting Started

The Main Test section of the report shows each iteration. You see the value of
the test vector signal and determine the values the Limit Check element used
in evaluating whether the test passed. For the first several iterations, the
value of Y did not exceed either the high or low limits so the iterations passed.
You can also see this in the scalar plot drawn while the test ran. For other
iterations that failed, you can scroll through the report to find the values of Y.

View Test Results
The SystemTest software allows you to view the results you have chosen to
save for your test using a workspace variable called stresults. It provides
access to the test results object, which is useful for comparing the results of
separate test runs and for postprocessing test results.

To continue the example, after you run the test, return to MATLAB and type
stresults. The following summary of the results is returned.

You can see that the test contains 60 iterations, that it contains a test vector
signal, and the names of the three saved results are HiLimit, LowLimit,
and Y.

To see a more complete list of properties, type:

1-44

Analyze Test Results

get(stresults)

That displays the following.

The ResultsDataSet property contains the test results data in the form of a
dataset array. This is what you set up using the Saved Results node in the
Test Browser. See “Save Test Results” on page 1-31 for more information
on setting up saved results.

To access the ResultsDataSet property, type:

stresults.ResultsDataSet

This returns the test results data in the form of a dataset array.

In the example, a portion of the test results data looks like this:

1-45

1 Getting Started

In the dataset array, each row represents a test iteration, labeled using the
convention of ['I' + Iteration_Number]. This example shows the first 10
iterations. Test vector values are listed first, in alphabetical order, followed
by test results, listed in alphabetical order, as shown in the above figure. This
is a simple way to view the results you set up in Saved Results. The test
results for all iterations are displayed at the command line, even though
only the first ten are only shown here.

You can now plot the results.

1-46

2

Working with Test Vectors

• “MATLAB Expression Test Vectors” on page 2-2

• “Grouped Test Vectors” on page 2-5

• “Test Vectors and the MATLAB Workspace” on page 2-13

• “MAT-File Test Vectors” on page 2-14

• “Randomized Test Vectors with Probability Distributions” on page 2-20

• “Spreadsheet Data Test Vectors” on page 2-46

• “Simulink Design Verifier Data File Test Vectors” on page 2-55

• “Create Signal Builder Block Test Vectors” on page 2-69

• “Create a Test Case Data Test Vector” on page 2-75

• “Access Test Case Data Using MATLAB Element” on page 2-78

• “Edit Test Vector from within an Element” on page 2-79

2 Working with Test Vectors

MATLAB Expression Test Vectors
Test vectors define the parameter space or set of test cases you want to run.
Test vectors are composed of values that can be derived from a MATLAB
expression. You can use any MATLAB expression that evaluates to a 1-by-N
matrix or cell array to define your test vector. You must have at least one test
vector defined to run a test.

The total number of Main Test iterations is determined by permuting all test
vector values. For example, if one test vector is a 1-by-3 array and another is
1-by-2, it would result in a total of six iterations covering all the test vector
value combinations.

To add a test vector:

1 Click the New button in the Test Vectors pane.

In the Insert New Test Vector dialog box, keep the default test vector type
of MATLAB Expression.

2-2

MATLAB Expression Test Vectors

2 Assign a name to the vector in the Name field.

3 Enter the value by typing in values or a MATLAB expression in the
Expression field.

The Size field fills in automatically based on what you entered if you press
Enter or click outside of the Size field. For example, if you entered 1 : 1

2-3

2 Working with Test Vectors

: 10 in the Expression field, the Size would be a 1 x 10 double, which
means 10 iterations.

4 Select the Evaluate Test Vector each time the test is run option if
you want to use new values every time the test is run. For example, if
your expression included a rand function, a new set of random numbers
would be calculated each time. Leave it unselected if you want to use the
same values each time the test is run.

5 Click OK in the Insert Test Vector dialog box.

The new vector appears in the Test Vectors pane.

Note Grouping test vectors determines how they will be iterated through
when the test runs. For information on grouping vectors, see “Grouped Test
Vectors” on page 2-5.

For an example of creating test vectors in a test, see “Create a Test Vector”
on page 1-16.

2-4

Grouped Test Vectors

Grouped Test Vectors
When you create a test vector, it is an ungrouped vector by default, except
for Probability Distribution test vectors. You can also create grouped vectors,
in order to affect the way iterations are run. By grouping test vectors, they
will be indexed simultaneously with the other vectors in their group. Each
set of grouped values are then permuted with all the ungrouped test vectors.
This gives more control over the flow of tests and is useful for Design of
Experiments (DOE) or Monte Carlo-based testing as well as defining signal
groups, similar to those defined in the Simulink Signal Builder block.

For example, if you are testing a throttle body controller, you may want to
sweep across a range of input level or gain values, while simultaneously
selecting different throttle body types, each defined by their mass and
damping characteristics.

An example of the vectors in this scenario could look like this:

gain = [1 10 100]
mass = [a b c d]
damping = [w x y z]

If the gain vector is ungrouped, and the mass and damping vectors are
grouped, it will result in mass and damping being indexed simultaneously for
each value of gain. The test runs would look like this:

Run 1: (1, a, w)
Run 2: (1, b, x)
Run 3: (1, c, y)
Run 4: (1, d, z)
Run 5: (10, a, w)
Run 6: (10, b, x)
Run 7: (10, c, y)
Run 8: (10, d, z)
Run 9: (100, a, w)
Run 10: (100, b, x)
Run 11: (100, c, y)
Run 12: (100, d, z)

2-5

2 Working with Test Vectors

Note Grouped test vectors must be the same length.

You create a grouped test vector as you do any other vector, by clicking
the New button in the Test Vectors pane. To group a vector, change the
selection using the Grouping tab in the Insert Test Vector dialog box. You
can group any type of test vector, and you can create multiple test vector
groups. You can also group or ungroup test vectors after you create them.

In general, it doesn’t usually make sense to group Signal Builder Block
test vectors or Simulink Design Verifier Data File test vectors. There are
advantages to grouping MATLAB Expression, Probability Distribution, and
Spreadsheet Data test vectors at times, depending on your test goals. One
of the main advantages to grouping is for Monte Carlo-based testing, as
described by the example above.

To group a test vector:

1 Create a test vector and configure it in the General tab of the Insert Test
Vector dialog box.

2 Click the Grouping tab in the Insert Test Vector dialog box.

3 Select the Assign test vector to a group option.

A group is created and given the default name of Group1, as shown here.

2-6

Grouped Test Vectors

4 To change the name, type the new name over the default name and press
Enter.

5 Click OK in the Insert Test Vector dialog box.

In the Test Vectors pane, the name of the group is displayed in the table.

6 Now if you create another test vector, you can add it to the same group as
the first one. To do this, click the New button again.

2-7

2 Working with Test Vectors

7 Select the test vector type and configure it in the General tab.

8 Click the Grouping tab, and select the Assign test vector to a group
option.

Note that test vectors in a group must all be the same length.

If you already have one test vector group, the new vector is placed in that
group by default.

2-8

Grouped Test Vectors

9 Click OK in the Insert Test Vector dialog box.

2-9

2 Working with Test Vectors

You can create multiple test vector groups. Once you have multiple groups,
when you create new test vectors, you can select which group to put them in as
you create them. The following figure shows Group1 containing TestVector1
and TestVector2, and Group2 containing TestVector3 and TestVector4.

2-10

Grouped Test Vectors

2-11

2 Working with Test Vectors

You can also create groups after test vectors are already created by editing a
test vector in the Test Vectors pane. Select a test vector in the table to edit
its properties in the editor area below the table. There you can add it to a
group using the Grouping tab. You can also add it to a group in the table by
clicking in the Group Name column.

Managing Test Vector Groups

You can modify groups to ungroup a test vector, move a test vector to another
group, rename a group, or delete a group.

• Ungroup a test vector — To remove a test vector from a group, select
it in the test vectors table, then click the Group Name column. Use the
down-arrow to select the first entry, which is a blank space. The Group
Name column will then be empty for that test vector, indicating it is no
longer in a group.

• Move a test vector to another group— To move a test vector from one
group to another, select it in the test vectors table, then click the Group
Name column. Use the down arrow to select the group to move it to. The
Group Name column will then show the new group name.

• Rename a group— You can change the name of a test vector group either
in the table or in the editor area. Renaming a group in the table results
in the group name for a single test vector being changed. Renaming a
group in the editor area results in the name being changed for all vectors
in the group.

To rename a group for a single test vector, select that vector in the table,
then click in the Group Name column. Type a new name and press
Enter.
To rename a group for all test vectors in the group, select one of the
test vectors in the table. Then in the Grouping tab in the editor area,
select that group name in the upper section and type a new name. Press
Enter. You then see all of the test vectors in that group change to the
new name in the table.

• Delete a group — To delete a test vector group, select one of the test
vectors in the table that is in that group. Then in the editor area, under the
Grouping tab, that group name will be selected. Click the Delete button
on the Grouping tab. The group is deleted and all test vectors belonging
to that group become ungrouped.

2-12

Test Vectors and the MATLAB® Workspace

Test Vectors and the MATLAB Workspace
The SystemTest software has its own internal workspace that it uses to
manage test variables and test vectors independently. However it does
leverage the MATLAB workspace during test execution, and when using
a MATLAB element.

During test execution, SystemTest test variables and test vectors are
evaluated in the MATLAB base workspace. Then at the end of test execution,
they are cleared out and the MATLAB base workspace is restored to what it
was before the test execution.

When using a MATLAB element in the SystemTest software, you can
reference a variable in the base workspace without having to create a test
vector or test variable in the SystemTest software. However the SystemTest
software will not be aware of this data, so you could not make use of it in any
other element type or in saved results. You can only access it from a MATLAB
element. If you need to use it in other elements, you can create test variables
or test vectors in the SystemTest software.

2-13

2 Working with Test Vectors

MAT-File Test Vectors
The MAT-File test vector offers an easy way for you to use data from a
MAT-file in the SystemTest software.

To add a test vector:

1 Click the New button in the Test Vectors pane.

In the Insert New Test Vector dialog box, select the test vector type of
MAT-File.

2-14

MAT-File Test Vectors

The red border indicating that the element is in an error state is normal,
and will go away once you add file(s) in step 4.

2 Assign a name to the vector in the Name field.

3 Click the Add File(s) button.

2-15

2 Working with Test Vectors

4 In the Select MAT-File dialog box, browse for your MAT-file(s). You can
select multiple files at the same time. Only MAT-files can be added. Other
file types produce an error. After selecting the file(s), click the Open button
to bring them into the test vector.

In the MAT-Files to read table on the General tab, MAT-files that are
checked will be used in the test. Unchecking a file means it will not be
included in the test.

5 Click the Variables tab. All the common variables contained in all the
selected MAT-file(s) you added appear in the table.

2-16

MAT-File Test Vectors

Note that the variables are sorted in alphabetical order. If you have
multiple MAT-files, only variables that are common across all files appear
in the table.

Variables that are checked will be used in the test. Unchecking a variable
means it will not be included in the test. In the example above, all variables
except for ans will be used in the test.

2-17

2 Working with Test Vectors

Checking or unchecking the checkbox in the table header will select or
unselect all variables. It is a Select All/Unselect All toggle option.

6 MAT-File test vectors are ungrouped by default. On the Grouping tab,
you can select the Assign test vector to a group option if you want to
group the test vector.

Grouping test vectors is useful for reducing the number of iterations to
execute. It means that the SystemTest software will sequentially combine
values for all grouped test vectors, instead of permuting their values. See
“Grouped Test Vectors” on page 2-5 for more information on grouped test
vectors.

7 Click OK in the Insert Test Vector dialog box.

The new vector appears in the Test Vectors pane.

Important Usage Notes

• If you use multiple MAT-Files in a test vector, only commonly named
variables included in all of the files will be read and used. For example, if
you have variables in MAT-file A called Speed, Distance, and Pressure,
and in MAT-file B you have variables Speed, Pressure, and Torque,
only Speed and Pressure will be shown since they are included in both
MAT-Files. Distance and Torque will not be used since they do not exist
in both files.

• If the order of execution of the MAT-files is important, then use the up and
down arrows to order the files accordingly in the test vector table. Each
MAT-file is one iteration of the test vector, and they are executed in the
order they appear in the table.

• The test vector is evaluated every time the test is run – that means the
data is read from the MAT-File(s) every time the test is run.

• If a MAT-File test vector is mapped to the inport blocks in a Simulink
element using the All Inport blocks are mapped option, the model
is simulated using all the variables that are selected in the Variables
table in the test vector. If it is mapped to the inport blocks using the
Individual Inport blocks are mapped option, the model is simulated
with individually selected variables from the MAT-file.

2-18

MAT-File Test Vectors

• Checking or unchecking the checkbox in the Variables table header will
select or unselect all variables. It is a Select All/Unselect All toggle option.
This option affects the variables selection behavior when you add or remove
or select or unselect MAT-files in the MAT-file list on the General tab.

For example, if the checkbox is selected (to Select All variables) and then a
MAT-file is added/removed or selected/unselected, all common variables
will be selected by default.

If the checkbox is unselected (to Unselect All variables) and then a
MAT-file is added/removed or selected/unselected, all common variables
will be unselected by default.

2-19

2 Working with Test Vectors

Randomized Test Vectors with Probability Distributions

In this section...

“Probability Distributions in Test Vectors” on page 2-20

“Create a Test Vector with Probability Distributions” on page 2-20

“View Data While Configuring the Test Vector” on page 2-25

“The Probability Distributions” on page 2-28

“Create Test Vectors with Probability Distributions” on page 2-36

Probability Distributions in Test Vectors
The SystemTest software provides an easy way to generate randomized test
vector values for your test. You can use probability distribution functions to
set up test vectors, which is useful for performing Monte Carlo analyses.

If you have the Statistics Toolbox™ software, the SystemTest software
integrates with it to provide use of some of its probability distribution
functions, such as exponential, gamma, lognormal, T (Student’s t), and
Weibull. If you do not have the Statistics Toolbox software, you can use the
MATLAB probability distribution functions normal (Gaussian) and uniform.

Create a Test Vector with Probability Distributions
You can use a probability distribution when you create or edit a test vector.
To use a probability distribution:

1 In the Test Vectors pane, click the New button.

2 In the Insert Test Vector dialog box, select Probability Distribution as
the test vector type.

3 Enter a name for the new vector in the Name field.

4 Select a distribution function from the Distribution list.

2-20

Randomized Test Vectors with Probability Distributions

If you have the Statistics Toolbox software, all of the functions shown in
the figure appear in the list. If you do not have this toolbox, you can use
normal (Gaussian) and uniform.

For information on the distribution functions, see “The Probability
Distributions” on page 2-28.

5 Once you select a distribution, the relevant options appear. Fill in the
parameters for your distribution.

2-21

2 Working with Test Vectors

For example, normal (Gaussian) allows you to set Mean and Standard
deviation.

6 After setting the relevant probability parameters, type in the Number of
values you want to use. That is the number of values you would like to
generate for the test vector.

TheNumber of valuesmust be a positive integer. It must also be the same
value for all of your probability distributions because the vector is grouped.

7 If you want to see the data you have configured before running the test,
click the View Data button. This displays a histogram visualization of the
probability distribution data. If you are not satisfied with the data as it is
configured, you can adjust one or more of the parameters and hit Enter to
see the changes in the figure window.

For more information on viewing the data, see “View Data While
Configuring the Test Vector” on page 2-25.

8 Select the Evaluate Test Vector each time the test is run option if you
want to use new values every time the test is run. For example, for the

2-22

Randomized Test Vectors with Probability Distributions

probability distribution, a new set of values for the parameters (such as
Mean) would be calculated each time. Leave it unselected if you want to
use the same values each time the test is run.

If you are doing Monte Carlo testing and you want repeatability of the
data, do not use this option.

9 On the Grouping tab, keep the default of Grouped, or select Ungrouped.

Randomized test vectors with probability distributions are grouped by
default, as indicated by Grouped being selected.

Grouping test vectors is useful for reducing the number of iterations to
execute. It means that the SystemTest software will sequentially combine
values for all grouped test vectors, instead of permuting their values. In
the case of randomized test vectors, grouping avoids introducing additional
variation into your test. See Creating Grouped Test Vectors for more
information on grouped test vectors.

10 Click OK in the Insert Test Vector dialog box.

The new vector then appears in the Test Vectors pane.

2-23

2 Working with Test Vectors

2-24

Randomized Test Vectors with Probability Distributions

View Data While Configuring the Test Vector
You can view your probability distribution data while configuring the test
vector, without having to run the test. You can quickly inspect the test vector
data for outliers, data range coverage, or correctness of the test function
before running the test. This allows you to make necessary adjustments until
you have data you are satisfied with, which saves time.

To view data while configuring a test vector:

1 Create the test vector by clicking theNew button in the Test Vectors pane.

2 In the Insert Test Vector dialog box, select Probability Distribution as
the test vector type.

3 Select a distribution function from the Distribution list.

4 Once you select a distribution, the relevant parameters appear. Fill in the
parameters for your distribution.

In this example, Normal (Gaussian) is shown, with a mean of 1.0, standard
deviation of 3, and 40 values.

5 Click the View Data button on the General tab.

2-25

2 Working with Test Vectors

6 The data viewer window displays the data you configured in a histogram
visualization. The values are displayed on the x-axis, and in this case they
range from approximately -6 to 9. The parameters are also displayed
textually in the figure window in the upper right corner. For comparison
purposes, a light orange line showing the “ideal” probability distribution is
also displayed on top of your data.

7 When satisfied with the data that is shown, click OK to finish creating
the test vector.

8 If you are dissatisfied with the data, change one or more parameters and
redisplay it. In this case, change the standard deviation from 3 to 2. To
change a value, type a new value in the parameter you want to change

2-26

Randomized Test Vectors with Probability Distributions

and either press Enter or click outside of the field. The figure window
automatically updates to display the new data.

You can also view and modify the test vector data any time after creating
a test vector. Access the data viewer by clicking the Test Vectors tab in
the Properties pane, then selecting a test vector from the list. That test
vector then becomes editable, and you can click the View Data button on
the General tab.

2-27

2 Working with Test Vectors

The Probability Distributions
If you have the Statistics Toolbox software, the SystemTest software
integrates with it to provide use of some of its probability distribution
functions, such as exponential, gamma, lognormal, T (Student’s t), and
Weibull. If you do not have the Statistics Toolbox software, you have access
to the MATLAB probability distribution functions normal (Gaussian) and
uniform.

The SystemTest software supports the distribution functions shown in the
following sections. Select the Probability Distribution test vector type in
the Insert Test Vector dialog box to access the functions.

The Insert Test Vectors dialog box shows fields specific to the distribution you
pick in the list, as shown in the sections below. In each case, enter values for
the function-specific parameters, and then enter the Number of values you
want to generate for the test vector.

Normal (Gaussian)
The normal distribution is a two-parameter family of curves. The first
parameter is the mean. The second parameter is standard deviation. Normal
is often used for data that is symmetrical about the mean.

2-28

Randomized Test Vectors with Probability Distributions

Normal uses the function randn and takes parameters for Mean and
Standard deviation. The SystemTest software uses the following
calculation for normal:

mean + Std_Dev * randn(1, #values)

For more information, see randn in the MATLAB documentation.

Uniform
The uniform distribution (also called rectangular) has a constant probability
density function between its two parameters, the minimum and the maximum.

The uniform distribution is appropriate for representing the distribution of
round-off errors in values tabulated to a particular number of decimal places.

2-29

2 Working with Test Vectors

Uniform uses the function rand and takes parameters for Minimum
value and Maximum value. The SystemTest software uses the following
calculation for uniform:

min + (max-min) * rand(1, #values)

For more information, see rand in the MATLAB documentation.

Exponential
The exponential distribution is a special case of the gamma distribution. The
exponential distribution is special because of its utility in modeling events
that occur randomly over time.

Exponential is often used to model the time between independent events that
happen at a constant average rate. For example, you could use it for the
time it takes a radioactive particle decays, or the time between messages
sent over a network.

2-30

Randomized Test Vectors with Probability Distributions

Exponential uses the function exprnd and takes one parameter forMean.

For more information, see “Exponential Distribution” in the Statistics Toolbox
documentation.

2-31

2 Working with Test Vectors

Gamma
The gamma distribution models sums of exponentially distributed random
variables.

Gamma uses the function gamrnd and takes parameters for A and B.

For more information, see “Gamma Distribution” in the Statistics Toolbox
documentation.

2-32

Randomized Test Vectors with Probability Distributions

Lognormal
The normal and lognormal distributions are closely related. The lognormal
distribution is applicable when the quantity of interest must be positive, since
log(X) exists only when X is positive.

Lognormal can be used to model something that can be thought of as the
multiplicative product of many small independent factors. A common
example is the long-term return rate on a stock investment, because it can
be considered as the product of daily return rates.

Lognormal uses the lognrnd function and takes parameters for Mean and
Standard deviation.

For more information, see “Lognormal Distribution” in the Statistics Toolbox
documentation.

2-33

2 Working with Test Vectors

T
The T (Student’s t) distribution is a family of curves that depend on a single
parameter v (the degrees of freedom). As v goes to infinity, the T distribution
approaches the standard normal distribution.

T is often used to estimate properties when the sample size is small.

T uses the trnd function and takes one parameter for Degrees of freedom.

For more information, see “Student’s t Distribution” in the Statistics Toolbox
documentation.

2-34

Randomized Test Vectors with Probability Distributions

Weibull
The Weibull distribution is an appropriate analytical tool for modeling the
breaking strength of materials. Current usage also includes reliability
and lifetime modeling. The Weibull distribution is more flexible than the
exponential distribution for these purposes.

Weibull uses the function wblrnd and takes parameters for A and B.

For more information, see “Weibull Distribution” in the Statistics Toolbox
documentation.

2-35

2 Working with Test Vectors

Create Test Vectors with Probability Distributions
Many models must take into account the effect of evaluating uncertainty in
model parameters. In this example the tester needs to account for uncertainty
in electric motor characteristics that come off the production line so the
tester defines the model’s parameters as distributions of values, rather than
as single fixed values. The tester then performs a Monte Carlo simulation,
running the model repeatedly with random combinations of parameter values
to account for variability in manufacturing.

In this case, the tester defines the uncertain motor parameters as test vectors.
The test varies parameters for armature resistance, armature inductance,
and shaft inertia.

To create the first vector, for armature resistance:

1 In the Test Vectors pane, click the New button.

2 In the Insert Test Vector dialog box, select Probability Distribution as
the test vector type.

3 Enter ArmatureResistance in the Name field.

4 In the Insert Test Vector dialog box, use the default distribution, normal
(Gaussian).

You do not need to have the Statistics Toolbox software installed to use
normal (Gaussian) since it is included with MATLAB.

5 In the Mean field, enter 1.71.

6 In the Standard deviation field, enter .056.

2-36

Randomized Test Vectors with Probability Distributions

7 In the Number of values field, enter 1000.

For this vector, the test is varying armature resistance up to a standard
deviation of .056, around a mean of 1.71, and using 1000 values.

8 Click the View Data button to see a visualization of the test vector
data that you configured. This displays a histogram visualization of the
probability distribution data that will be used when the test is run. If you
are not satisfied with the data as it is configured, you can adjust one or
more of the parameters and hit Enter to see the changes in the figure
window. In this case, we keep the data, as shown here.

2-37

2 Working with Test Vectors

For more information on viewing the data, see “View Data While
Configuring the Test Vector” on page 2-25.

9 Click OK in the Insert Test Vector dialog box.

The new vector appears in the Test Vectors pane.

2-38

Randomized Test Vectors with Probability Distributions

To create the second vector, for armature inductance:

2-39

2 Working with Test Vectors

1 In the Test Vectors pane, click the New button.

2 In the Insert Test Vector dialog box, select Probability Distribution as
the test vector type.

3 Enter ArmatureInductance in the Name field.

4 Use the default distribution, normal (Gaussian).

5 In the Mean field, enter .3.

6 In the Standard deviation field, enter .01.

2-40

Randomized Test Vectors with Probability Distributions

7 In the Number of values field, enter 1000.

For this vector, the test is varying armature inductance up to a standard
deviation of .01, around a mean of .3, and using 1000 values.

8 You can optionally click the View Data button to see a visualization of the
test vector data that you configured.

9 Click OK in the Insert Test Vector dialog box.

The new vector appears in the Test Vectors pane.

2-41

2 Working with Test Vectors

To create the third vector, for shaft inertia:

2-42

Randomized Test Vectors with Probability Distributions

1 In the Test Vectors pane, click the New button.

2 In the Insert Test Vector dialog box, select Probability Distribution as
the test vector type.

3 Enter ShaftInertia in the Name field.

4 Use the default distribution, normal (Gaussian).

5 In the Mean field, enter 44.5.

6 In the Standard deviation field, enter .443.

2-43

2 Working with Test Vectors

7 In the Number of values field, enter 1000.

For this vector, the test is varying shaft inertia up to a standard deviation
of .443, around a mean of 44.5, and using 1000 values.

8 You can optionally click the View Data button to see a visualization of the
test vector data that you configured.

9 Click OK in the Insert Test Vector dialog box.

The new vector appears in the Test Vectors pane.

2-44

Randomized Test Vectors with Probability Distributions

2-45

2 Working with Test Vectors

Spreadsheet Data Test Vectors

In this section...

“Introduction” on page 2-46

“Create a Spreadsheet Data Test Vector” on page 2-46

“Configure the Spreadsheet Data Test Vector” on page 2-50

“Replace Strings” on page 2-53

Introduction
The Spreadsheet Data test vector type can be used to read data from
Microsoft® Excel® files or .csv files into the SystemTest software. This
feature also supports file formats used by the MATLAB xlsread function.

You can read spreadsheet data from multiple sheets, and can read whole
sheets or a subset of a sheet.

For a detailed example using the Spreadsheet Data test vector, see “Override
Simulink Inport Blocks Using a Spreadsheet Data Test Vector” on page 4-28.

Note For additional technical information and limitations of this feature,
see the SystemTest Release Notes.

Create a Spreadsheet Data Test Vector
To create a Spreadsheet Data test vector:

1 In the Test Vectors pane, click the New button.

2 In the Insert Test Vector dialog box, select Spreadsheet Data as the test
vector type.

2-46

Spreadsheet Data Test Vectors

3 On the General tab, click the Add File button.

Browse to your Microsoft Excel spreadsheet file or a .csv file and click
Open.

4 The first sheet of your file is selected by default. If the file has multiple
sheets and you want to use them, select the other sheet(s). There is no limit
to the number of sheets you can use.

2-47

2 Working with Test Vectors

5 Select the Evaluate Test Vector each time the test is run option if you
want to read the file every time the test is run. Leave it unselected if you
want to use the same values each time the test is run.

In the case of a Spreadsheet Data test vector, using this option means that
data would be read from the spreadsheet file every time the test is run. If
you expect the data to change and want to have it read every time, select
this option. If you know the data is static or you do not want it to be read
each time, unselect the option.

Note that you can use the Evaluate button in the Test Vectors pane any
time for an immediate evaluation.

6 On the Data Selection tab, choose the range to use in the test vector.
Enter this information in the Data Range section to select the range.

Specify whether your data is arranged by column or row using the Data is
arranged by option.

Then select the specific range using the Read data from option. For
example, if you have a file that has data in columns A, B, and C, and there
is data in rows 3 through 13 and you want to read all the data, in the Read
data from column option, fill in A to C. Then in the starting at row
option, enter 3. The SystemTest software will read to the end of the data.

All data in the designated columns is read, from the start-at row through
the end of data. Therefore you should only put data in the columns that you
want to be read. Extraneous data should be removed if you do not want it to
be read. Any blank cells within the read data range will be treated as NaN.

If the first row of your sheet is a header, you can select the First row is a
header option to have the SystemTest software exclude it from the data.

7 In the For Each Selected Sheet section, select the option to determine
how the data is arranged when the vector is created. You can have each
row (or column) of the spreadsheet be a separate test vector value, or you
can have the entire sheet be one test vector value.

2-48

Spreadsheet Data Test Vectors

See “Configure the Spreadsheet Data Test Vector” on page 2-50 for more
information about these two options.

8 You can optionally replace strings in the file with values using the String
Replacement tab. The table is automatically populated with any strings
contained in your sheet(s). If you want to replace each occurrence of a
particular string with a value, type the value in the Value column of the

2-49

2 Working with Test Vectors

table. Then when the test vector is evaluated, that string will be replaced
with the value you indicated to populate the test vector.

See “Replace Strings” on page 2-53 for more information about this option.

9 Click OK in the Insert Test Vector dialog box. The new vector then appears
in the Test Vectors pane.

After creating a Spreadsheet Data test vector, you can edit it any time by
selecting it in the table in the Test Vectors tab. If you make any changes to
the configuration of the test vector in the SystemTest software, they will be
applied immediately. If you make any changes to the underlying spreadsheet,
you can have the data reread by clicking the Evaluate button above the
test vectors table.

For a detailed example using the Spreadsheet Data test vector, see “Override
Simulink Inport Blocks Using a Spreadsheet Data Test Vector” on page 4-28.

Note If the data in your spreadsheet is numeric, it will be a double array in
the test vector. If the data contains any strings, it will be a cell array. If the
data contains header information and you specified the first row as a header,
that will be excluded, and if the remaining data is numeric, it’s treated as a
double array.

Configure the Spreadsheet Data Test Vector
As shown in step 7 in “Create a Spreadsheet Data Test Vector” on page 2-46,
you can configure test vector values using the Data Selection tab when you
create or edit a Spreadsheet Data test vector.

In the For Each Selected Sheet section, you select the option to determine
how the vector is created. You can have each row (or column) of the
spreadsheet be a separate test vector value, or you can have the entire sheet
be one test vector value.

2-50

Spreadsheet Data Test Vectors

Treat each row as a test vector value

The Treat each row as a test vector value option means that each row
or column (depending on what you selected in the Data is arranged by
option) is one test vector value.

In the first case shown here, column A contains values for the parameter
Gain. Suppose this column contains 10 values, in rows 2 through 11 (row 1 is
a header). The resulting test vector would be a 1-by-10 array containing 10
values. The first value is 1, the second value is 1.1, etc. The ten populated
rows result in a total of ten values, each row being one scalar value.

The same is true of the second example shown — that each row is a separate
value, except that in this case each value is an array, instead of a single
scalar. The first test vector value in this case is the array [1 2 1]. The
second test vector value is [2 4 4], etc. If this sheet also had ten rows, there
would be ten separate values (each an array of 3 numbers) and the test
vector length would be 10.

2-51

2 Working with Test Vectors

Treat each selected sheet as a test vector value

The Treat each selected sheet as a test vector value option means that
each entire sheet is one test vector value.

If the sheet contains multiple rows and columns, the resulting test vector
value is a matrix. In the first example shown here, labeled Simulink Signals,
this spreadsheet file contains 3 sheets. Suppose each sheet contained the
three columns shown, t, u1, and u2, and had just the three rows of values
shown. The resulting test vector would be of length 3 since each sheet is
one test vector value and there are three sheets, and each of the three test
vector values would be a 3-by-3 matrix.

Suppose the second example, labeled MATLAB Matrix, contained five sheets
and each sheet had the three columns shown, each with ten rows of data. The
resulting test vector would be of length 5 since each sheet is one test vector
value and there are five sheets, and the five test vector values would each be a
10-by-3 matrix, since the sheets have ten rows of data and three columns.

Configuring each sheet to be one test vector value can be useful in a case
where you have a test case in each sheet, and each test case is a matrix.

2-52

Spreadsheet Data Test Vectors

Using Multiple Sheets

If you configure a test vector to use multiple sheets in a file, and you use the
Treat each row as a test vector value option, each sheet is read, turned
into individual rows, and then appended together. For example, if your file
has three sheets containing three, four, and five rows of data respectively, the
resulting test vector is a set of row vectors as follows:

row 1 from sheet 1
row 2 from sheet 1
row 3 from sheet 1
row 1 from sheet 2
row 2 from sheet 2
row 3 from sheet 2
row 4 from sheet 2
row 1 from sheet 3
row 2 from sheet 3
row 3 from sheet 3
row 4 from sheet 3
row 5 from sheet 3

If you configure a test vector to use multiple sheets in a file, and you use the
Treat each selected sheet as a test vector value option, the resulting test
vector will have the same number of values as there are sheets in the file. The
same file with three sheets would have three values:

sheet 1
sheet 2
sheet 3

Replace Strings
As shown in step 8 in “Create a Spreadsheet Data Test Vector” on page 2-46,
you can optionally replace strings in the data you read from your spreadsheet
files with values using the String Replacement tab when you create or edit
a Spreadsheet Data test vector. The table lists any strings contained in your
sheet(s), excluding headers if you’ve specified they are present.

If you want to replace each occurrence of a particular string with a value, type
the value in the Value column of the table. Then when the test is run, that
string will be replaced with the value you indicated to create the test vector.

2-53

2 Working with Test Vectors

An example use case for this feature is that you could have a spreadsheet that
contains values for switches, and the values are designated by the strings
ON and OFF.

In this example, you might want to replace each instance of ON with a 1 and
each instance of OFF with a 0. The String Replacement tab of the Insert
Test Vector dialog box would look like the following:

If you want to map the same strings to different values, you have to create
separate test vectors and do each replacement mapping separately. For
example, in the previous case, you might want the values for Switch A to map
to 1 and 0 as shown, but for Switch B you might want to use 100 and 0. In
this case, create a test vector that reads only column A and replace ON and
OFF with 1 and 0, and then create a second test vector for column B that
maps Switch B values to 100 and 0.

2-54

Simulink Design Verifier Data File Test Vectors

Simulink Design Verifier Data File Test Vectors

In this section...

“Prerequisites” on page 2-55

“Create SystemTest Harness from Simulink® Design Verifier™” on page
2-55

“Create a Simulink Design Verifier Test Vector” on page 2-57

“Important Usage Notes” on page 2-67

Prerequisites
The Simulink Design Verifier Data File test vector can read test cases created
by the Simulink Design Verifier™ software. In order to use this test vector,
you need a Simulink Design Verifier data file with test cases.

To use this feature, you first run Simulink Design Verifier with the
appropriate configuration. Then you can do one of two things:

• Generate a SystemTest harness for the model from Simulink. When it
completes, a new test opens automatically in SystemTest and a Simulink
Design Verifier Data File test vector is automatically created. This
workflow is described in “Create SystemTest Harness from Simulink®

Design Verifier™” on page 2-55.

• If you already have a data file from Simulink Design Verifier, you can
create a test vector in SystemTest that uses the test cases in the data file,
and configure overrides in a Simulink element. This workflow is described
in “Create a Simulink Design Verifier Test Vector” on page 2-57.

Create SystemTest Harness from Simulink Design
Verifier
If you generate a SystemTest test harness from Simulink using Simulink
Design Verifier, a new test opens automatically in SystemTest with a
Simulink Design Verifier Data File test vector and a Simulink element
automatically created for you. The following steps outline this workflow.

1 From your model, select Analysis > Design Verifier > Options.

2-55

2 Working with Test Vectors

2 In the Configuration Parameters dialog box, select Design Verifier
> Results, and then enable the Save test harness as SystemTest
TEST-file option.

3 Click OK.

4 In Simulink, save the model.

5 From your model, select Analysis > Design Verifier > Generate Tests
to run the model and generate the SystemTest test harness.

After the model generates test cases, the SystemTest software opens
automatically. A Simulink Design Verifier Data File test vector containing

2-56

Simulink Design Verifier Data File Test Vectors

the generated test inputs is automatically created. A Simulink element
is also created, configured with the model name, override mappings set,
and model coverage enabled.

6 Optionally, in the SystemTest software, you can add other things to the
test, such as a plot element. For an example of this, see “Create a Simulink
Design Verifier Test Vector” on page 2-57.

7 Run the test in the SystemTest software by clicking the Run button.

Create a Simulink Design Verifier Test Vector
If you already have a data file from Simulink Design Verifier, you can create a
test vector in the SystemTest software that uses the generated rest cases in
the data file, and configure overrides in a Simulink element. The following
steps outline this workflow.

1 In the Test Vectors pane, click the New button.

2 In the Insert Test Vector dialog box, select Simulink Design Verifier
Data File as the test vector type.

2-57

2 Working with Test Vectors

3 Accept the default test vector name, or type a new one in the Name field.

4 Type the name of the Simulink Design Verifier data file in the Type field,
or use the Browse button to locate it. It will be a .mat file.

Note that you must use a valid MAT-file – a Simulink Design Verifier data
file created in version R2008b or later. If you try to use a data file created
in an earlier version of the software or a MAT-file that is not generated
from Simulink Design Verifier, you will get an error.

2-58

Simulink Design Verifier Data File Test Vectors

5 When the data file is read in, the test cases appear in the Test Cases Name
table. Click any test case to see its test case description below the table.

6 To see information from the Simulink Design Verifier data file, click the
Details tab. This provides analysis information on the data file, and the
model Inport blocks associated with the test cases. If the test cases involve
any model parameter configurations, they appear in the Parameters
section. This section will list any parameters that are used as part of a test
case. The information in this tab is not editable.

2-59

2 Working with Test Vectors

7 Click the OK button to finish creating the new test vector. It then appears
in the Test Vectors pane in the SystemTest desktop.

Now that the test vector is created, you can create mappings in a Simulink
element.

8 Create a Simulink element by clicking the Main Test node in the Test
Browser, and clicking the New button. Select Test Element > Simulink.

2-60

Simulink Design Verifier Data File Test Vectors

9 Type the name of the model, or use the Browse button to locate it. This
should be the same model that was used to create the Simulink Design
Verifier data file.

If you browsed for the file, when you click OK, the model opens.

10 In the Override Inport Block Signals with SystemTest Data section
of the Simulink element, select the All Inport blocks are mapped using
option. You must select this option in order to correctly use the Simulink
Design Verifier data file.

11 From the drop-down list, select the test vector you created earlier in this
workflow.

2-61

2 Working with Test Vectors

In the example shown here, the model name is
sldvdemo_cruise_control.slx and the vector is TestVector1.

2-62

Simulink Design Verifier Data File Test Vectors

12 If you have the Simulink Verification and Validation™ software and you
want to use the Model Coverage feature in the Simulink element, click
the Model Coverage tab.

13 Select the Enable Model Coverage check box.

14 Select Override model coverage metric settings.

15 Select any metrics you want to cover in the Coverage Metrics section.

2-63

2 Working with Test Vectors

16 Optionally, if you want to plot any of the signals, create a plot element.

2-64

Simulink Design Verifier Data File Test Vectors

Select the Simulink element you already created in the Test Browser, and
select New > Test Element > Plot – General.

17 In the Plot element, click the Add Plot button.

18 Select Simulink Data.

19 From the Simulink Data field, expand the test vector that you created to
see the individual signals.

2-65

2 Working with Test Vectors

2-66

Simulink Design Verifier Data File Test Vectors

20 Select one of the signals, for example, speed.

21 Run the test by clicking the Run button on the SystemTest toolbar.

In this example, after the test runs, a model coverage report and a plot
of the speed signal are generated.

Important Usage Notes
The following notes pertain to the integration between the SystemTest
software and Simulink Design Verifier using the Simulink Design Verifier
Data File test vector:

• Model Coverage Report — The model coverage report generated by
the model harness using Simulink Verification and Validation and that
of the SystemTest harness generated by Simulink Design Verifier will
be identical.

• Data Format — The format of the data from a Simulink Design Verifier
Data File test vector, if seen in a MATLAB element or in saved test results
for example, is a subset of the Simulink Design Verifier data format.

It is a MATLAB structure with one field, TestCases. Then the TestCases
field contains two fields, dataValues and paramValues. TestCases is a
1x1 structure. The following figure shows the data format for a Simulink
Design Verifier Data File test vector called TestVector1:

2-67

2 Working with Test Vectors

• Data file Version — To use the Simulink Design Verifier Data File test
vector, you must use a Simulink Design Verifier data file created in version
R2008b or later. If you try to use a data file created in an earlier version
of the software or a MAT-file that is not generated from Simulink Design
Verifier, you will get an error.

• Evaluating the Test Vector — If you make changes in the underlying
Simulink Design Verifier test cases, you can click the Evaluate button
in the Test Vectors pane any time to see the changes reflected in the
SystemTest user interface. However this is not necessary to pick up
the changes for running the test. When you run a test containing a
Simulink Design Verifier Data File test vector, the SystemTest software
automatically queries the data file for the latest information in the test
cases.

• Changing the Underlying Model — If you make changes in the
underlying Simulink model, such as changes to Inport blocks, you should
return to Simulink Design Verifier and regenerate the test cases and the
test harness. Then return to SystemTest test harness to continue working
with your test.

• Model End Time — In the use case where you automatically generate
the SystemTest test harness from Simulink Design Verifier, the end time
used will be that of the test cases per iteration. However, in the use case
where you create the test vector in SystemTest using a Simulink Design
Verifier data file that you already have, the underlying model’s end time
will be used per iteration.

• Bus Support — The Simulink Design Verifier Data File test vector
supports the use of busses in Inport blocks. Bus support is only available in
SystemTest through this feature.

2-68

Create Signal Builder Block Test Vectors

Create Signal Builder Block Test Vectors
If you have created a Simulink model test harness using a Signal Builder
block, you can automate the running of all your test cases by integrating them
into a SystemTest test. This also offers the ability to collect cumulative model
coverage metrics for all your Signal Builder test cases.

The most common workflow for this feature is to create a Simulink element
and then create the test vector from within the element, as follows:

1 In the SystemTest desktop, create a Simulink element by clicking the
Main Test node in the Test Browser, and clicking the New button. Select
Test Element > Simulink.

2 Type the name of the model, or use the Browse button to locate it. This
should be the model that includes the Signal Builder block whose test cases
you are interested in.

When you click OK, the model opens.

This example uses the model systemtestsfcar.

3 In the Simulink element, click the up arrows in the banner of the Override
Inport Block Signals with SystemTest Data section to close it.

4 Click the down arrows in the banner of the Run Signal Builder test
cases from SystemTest section to expand it.

5 Enable the Signal Builder test cases by selecting the Use test vector
check box.

2-69

2 Working with Test Vectors

6 Click the down arrow and select <New Signal Builder Block test
vector...>.

7 The Insert Test Vector dialog box opens and Signal Builder Block is
the selected test vector type.

Keep the default test vector name or type a new one.

8 On the General tab, type the name of the model you used in the Simulink
element, or click the Browse button to locate it.

2-70

Create Signal Builder Block Test Vectors

Note You cannot use a Signal Builder Block test vector with a Simulink
element that uses a different model. You must refer to the same model in
both the test vector and the Simulink element.

2-71

2 Working with Test Vectors

9 When the model is found, the Signal Builder test cases appear in the Test
Cases section.

If there are any test cases you do not want to test, you can disable them
using the check boxes. Test cases that are checked will be tested.

10 You can click the Test Signals tab to view the test signals associated with
your Signal Builder block.

2-72

Create Signal Builder Block Test Vectors

11 Click OK to finish creating the test vector.

12 To view or edit the test vector after it is created, click the Test Vectors tab
in the SystemTest desktop.

13 Optionally create other elements, test vectors, variables, or saved results,
and run your test.

Note If you make changes in the underlying Signal Builder block in your
model, you can click the Evaluate button in the Test Vectors pane any
time to see the changes reflected in the user interface. However this is not
necessary to pick up the changes for running the test. When you run a test
containing a Signal Builder Block test vector, the SystemTest software
automatically queries the model for the latest information in the Signal
Builder block.

Note When you run the test, the Signal Builder test cases are run in the
order in which they appear in the Signal Builder block in your model. This
same order is reflected in the Test Vectors pane in the SystemTest software,
unless you change the order in the table by sorting the columns.

2-73

2 Working with Test Vectors

Note You may have tested a Signal Builder block in previous SystemTest
versions by using the Override Block Parameters with SystemTest Data
section of a Simulink element. In that scenario you would create a new
mapping to the Signal Builder block.

However, using the Run Signal Builder test cases from SystemTest
section in the Simulink element and creating the Signal Builder Block test
vector is a better and easier solution. Because the Signal Builder test cases are
in a test vector, you can do more with them, such as plotting. Also, the signals
are stored in the SystemTest results set, rather than the index of the test case.

Note that if you have a Simulink element that contains the mappings from
the former way of including a Signal Builder block, and then you use the new
Signal Builder Block test vector and use the new section in the same Simulink
element, the test will use the new information in the Run Signal Builder
test cases from SystemTest section in the Simulink element.

2-74

Create a Test Case Data Test Vector

Create a Test Case Data Test Vector
You can create signals in the SystemTest software and use them to test a
Simulink model. The Test Case Editor provides a graphical way of creating,
editing, and visualizing signal data in SystemTest.

The Test Case Editor is accessed through the Test Case Data test vector in
the SystemTest software. For more information, see “Author and Use Signals
in Tests” on page 5-4.

To create a Test Case Data test vector:

1 On the Test Vectors pane of SystemTest software, click the New button.

2 In the Insert New Test Vector dialog box, select Test Case Data as the
test vector type.

3 Assign a name to the vector in the Name field.

4 Click OK in the Insert Test Vector dialog box.

2-75

2 Working with Test Vectors

The new vector appears in the Test Vectors pane.

5 On the Test Vectors pane, select the test vector you just created, and click
the Open Test Case Editor button to create the test cases and signals, as
described in “Author and Use Signals in Tests” on page 5-4.

2-76

Create a Test Case Data Test Vector

6 Alternatively, you can click the Open Test Case Editor button after step
3, while creating the test vector. If you do that, click the OK in the Insert
Test Vector dialog box once you return to the SystemTest desktop.

Whether you create the test cases and signals during creation of the test
vector, or after you have created it, see “Create Test Cases, Signals, and
Buses” on page 5-9 for information on creating and editing the test cases
and signals.

2-77

2 Working with Test Vectors

Access Test Case Data Using MATLAB Element
You can access the data from a Test Case Data test vector by using a MATLAB
element in a test that has a Test Case Data test vector. You could use the
data for a variety of reasons, such as writing it to a CSV file, calling a custom
function, or creating a plot.

If you have a Test Case Data test vector called TestVector1 with a signal
called Signal1, and use a custom analysis function in your test, the following
are examples of code you could use in a MATLAB element to access the
signal’s data for your function.

Get a cell array of signal names stored in the Test Case Data test vector.

signalNames = getValue(TestVector1);

Get the timeseries object.

Signal1Timeseries = getValue(TestVector1, 'Signal1');

Get the Time and Data out.

time = Signal1Timeseries.Time;
data = Signal1Timeseries.Data;

Call your custom function.

myCustomAnalysisFunction(time, data)

2-78

Edit Test Vector from within an Element

Edit Test Vector from within an Element
If you want to edit a test vector while working within an element, you can
open the editor by right-clicking on the name of the test vector in the table(s)
on the Properties tab of some of the elements. This feature is included in
the following elements:

• Limit Check – General Check

• Limit Check – Tolerance Check

• Simulink

• General Plot

2-79

2 Working with Test Vectors

2-80

3

Constructing a Test

• “Test Sections” on page 3-2

• “Basic Elements” on page 3-5

• “Deprecated Elements” on page 3-24

3 Constructing a Test

Test Sections

In this section...

“Overview” on page 3-2

“Pre Test” on page 3-2

“Main Test” on page 3-3

“Post Test” on page 3-3

Overview
Each section of the test serves a different purpose and has different properties
that can be set in the Properties pane. Click a part of the test or an element
in the Test Browser to see the properties for that section or element.

The descriptions of the elements in this chapter include a list of which sections
of the test you can use each element in. The following sections describe the
sections of a test. They are followed by a description of how to use the basic
elements.

Pre Test
The Pre Test runs once prior to any number of iterations through Main Test.
Pre Test can be used to perform general test setup such as:

• Opening a model.

• Initializing variables.

• Accessing system resources, such as opening a file.

• Initializing external test equipment.

In Pre Test, only test variables defined as a Pre Test variable may be modified
or assigned to. Pre Test variables are initialized during Pre Test and persist
throughout the Main Test and Post Test.

In Pre Test you can add the following element types: Simulink, MATLAB,
Subsection, Stop, IF, Video Input, the three Instrument Control Toolbox
elements, and the four Data Acquisition Toolbox elements.

3-2

Test Sections

With Pre Test you can initialize Pre Test variables and run elements that you
only want to run once before any Main Test iterations. For example, you can:

• Add a Simulink element to run a model and assign baseline data to a Pre
Test variable.

• Add a MATLAB element to load a MAT-file or perform some other test
setup.

• Create conditions with the IF element and follow up with a Subsection
element to define what to do when those conditions are met.

Main Test
The Main Test is run one or more times based on the number of iterations.
It is used to:

• Execute elements multiple times in order to perform batch testing or sweep
through a parameter space.

• Perform batch testing or parameter sweeps that require multiple
independent iterations using different test conditions for each iteration.

The number of iterations is defined by the number and length of test vectors
you specify. The SystemTest software executes Main Test once for each
permutation of values in the test vectors specified.

In Main Test you can add all of the element types.

Post Test
The Post test runs once after all Main Test iterations have executed or when
a run-time error occurs in Pre Test or Main Test. Post Test can be used to
perform test cleanup, such as:

• Closing a model.

• Cleaning up your workspace.

• Releasing system resources, such as closing a file.

• Returning external test equipment to a safe state.

3-3

3 Constructing a Test

In Post Test you can add the following element types: MATLAB, Subsection,
IF, Video Input, the three Instrument Control Toolbox elements, and the four
Data Acquisition Toolbox elements.

3-4

Basic Elements

Basic Elements

In this section...

“Elements” on page 3-5

“MATLAB Element” on page 3-7

“Limit Check Element — General Check” on page 3-8

“Limit Check Element — Tolerance Check” on page 3-12

“IF Element” on page 3-15

“General Plot Element” on page 3-16

“Stop Element” on page 3-21

“Subsection Element” on page 3-22

Elements
Elements are the actions that a test performs. The SystemTest software
includes the following set of elements, listed in alphabetical order.

• General Plot — Used to plot any type of data over multiple iterations.

• IF — Implements a logic control operator.

• Limit Check — Specifies the comparison to be performed of the value(s)
under test and their expected value(s), or limit(s).

• MATLAB — Executes any MATLAB statements.

• Simulink — Runs a Simulink model. Note that you need to have a license
for Simulink to use this element.

• Stop — Implements a logic control operator.

• Subsection — Creates a new section in a test that you can use to group
elements within.

3-5

3 Constructing a Test

Note Some MathWorks products, such as Image Acquisition Toolbox, Data
Acquisition Toolbox, and Instrument Control Toolbox, provide their own
elements that integrate those products’ capabilities within the SystemTest
software. If you have licenses for those products, those elements will also
appear in the elements list.

For more information about using the basic elements, see “Construct a Test”
on page 1-13.

You add elements to a section in your test; however, not all elements can be
added to all sections. For example, you can use a MATLAB element anywhere
within a test, but you can only use the Limit Check element in the Main
Test section.

Tip You can rename any element or subsection by double-clicking its name
in the Test Browser.

3-6

Basic Elements

Invalid Characters in Element Names
The following characters are invalid to include within element names:

• ’

• <

• >

You cannot use these three characters in element names. If you create a new
test element with one or more of these characters in the element name, then
the SystemTest software throws an error dialog and the element name is
reset to the default value, which is the name of the element type.

If you try to load an existing test with an invalid element name (containing
one or more of the three characters listed above), the SystemTest software
displays an error dialog indicating that the element name is invalid. The test
will load successfully, but the element with an invalid name is reset to use the
default name for the element. If this occurs, simply rename the element to a
name that does not contain any of the invalid characters.

MATLAB Element
The MATLAB element lets you run MATLAB scripts from within a test.
In addition to specifying any valid MATLAB script to execute, you can
incorporate any test variable into your code, as well as access any variables
residing in the MATLAB workspace.

Allowed Test Sections
The MATLAB element can be used in the following test sections:

• Pre Test

• Main Test

• Post Test

3-7

3 Constructing a Test

Properties Pane
In the MATLAB Script edit field, enter any valid MATLAB script.

Limit Check Element — General Check
The General Check tab of the Limit Check element determines test
conditions are met by using scalar, vector, or matrix comparisons. It can be
used to:

• Compare measured data to expected data.

• Stop an iteration or an entire test if a test constraint is violated.

• Assign a test variable the logical value derived from the comparison(s)
for use by other elements.

You can do the following types of comparisons with the General Check tab
of the Limit Check element:

• Scalar versus scalar

• Scalar versus vector

• Vector versus vector

• Matrix versus matrix

3-8

Basic Elements

Note Use the Tolerance Check tab of the Limit Check element to test
absolute and relative tolerance.

Allowed Test Sections
The Limit Check element can be used in the following test section:

• Main Test

3-9

3 Constructing a Test

How to Use

1 Click the New button on the General Check tab to add a general limit
check.

• Select an existing test variable or create a new one in the Test Variable
column.

3-10

Basic Elements

• Select an operator in the Operator column.

• Select an existing test variable or test vector or create a new one in the
Limit column.

2 Set your test’s passing conditions.

• The element can pass if all comparisons complete (a logical AND).

• The element can pass if one or more of the comparisons complete (a
logical OR).

3 Set your fallback procedure if the element fails. You can:

• Allow the current iteration to continue executing.

• Stop the current iteration and proceed to the next iteration.

• Stop the test and proceed to Post Test.

4 Identify the SystemTest test variable you want to assign the logical value
derived from the comparison(s) in the Assign data to field.

Note Aside from setting limit checks on individual elements, you can set
these properties for the entire test, reachable by clicking the test name in the
Test Browser, to determine pass/fail criteria for the test as a whole.

Properties Pane — General Check
You can set the following properties for the Limit Check element:

• Test Variable— Value to compare to limit using operator.

• Operator— Boolean operator used to compare test variable to limit.

• Limit— Value to compare to test variable using operator.

• For this element to pass — Choose between a logical AND (all
comparisons must pass) or a logical OR (at least one comparison needs to
pass) for the element to pass.

• If this element fails— Choose between continuing the test, stopping the
current iteration, or stopping the entire test.

3-11

3 Constructing a Test

• Assign data to — Test variable assigned the logical value of this
evaluation. The logical value will be 1 if the element passes or 0 if the
element fails.

Limit Check Element — Tolerance Check
The Tolerance Check tab of the Limit Check element verifies test conditions
are met by using absolute and relative tolerance comparisons. It can be
used to:

• Compare measured data to expected data.

• Stop an iteration or an entire test if a test constraint is violated.

• Assign a test variable the logical value derived from the comparison(s)
for use by other elements.

• Define pass/fail criteria for an iteration.

You can do the following types of comparisons with the Tolerance Check tab
of the Limit Check element:

• Absolute tolerance

• Relative tolerance

For a definition of these tolerance types, see the Properties Pane section.

Note Use the General Check tab of the Limit Check element to test scalar,
vector, and matrix comparisons.

Allowed Test Sections
The Limit Check element can be used in the following test section:

• Main Test

3-12

Basic Elements

How to Use

1 Click the New button on the Tolerance Check tab to add a tolerance
limit check.

• Select an existing test variable or create a new one in the Test Variable
column.

3-13

3 Constructing a Test

• Select an existing test variable or test vector or create a new one in the
Expected Value column.

• Select Absolute or Relative in the Tolerance Type column.

• Select an existing test variable or test vector or create a new one in the
Tolerance Limit column.

2 Set your test’s passing conditions.

• The element can pass if all comparisons complete (a logical AND).

• The element can pass if one or more of the comparisons complete (a
logical OR).

3 Set your fallback procedure if the element fails. You can:

• Allow the current iteration to continue executing.

• Stop the current iteration and proceed to the next iteration.

• Stop the test and proceed to Post Test.

4 Identify the SystemTest test variable you want to assign the logical value
derived from the comparison(s) in the Assign data to field.

Note Aside from setting limit checks on individual elements, you can set
these properties for the entire test, reachable by clicking the test name in the
Test Browser, to determine pass/fail criteria for the test as a whole.

Properties Pane — Tolerance Check
You can set the following properties for the Limit Check element.

• Test Variable — Variable to compare with expected value using a
tolerance limit.

• Expected Value — Expected value to compare variable to using a
tolerance limit.

• Tolerance Type — Tolerance type used to compare test variable to the
expected value. Select Absolute or Relative. Absolute tolerance is
calculated using this formula: abs(test variable - expected value)

3-14

Basic Elements

<= tolerance limit. Relative tolerance is calculated using this formula:
abs(test variable - expected value) <= tolerance limit.*
abs(expected value).

• Tolerance Limit — Value used as the tolerance constraint to compare
variable and expected value.

• For this element to pass — Choose between a logical AND (all
comparisons must pass) or a logical OR (at least one comparison needs to
pass) for the element to pass.

• If this element fails— Choose between continuing the test, stopping the
current iteration, or stopping the entire test.

• Assign data to: — Test variable assigned the logical value of this
evaluation. The logical value will be 1 if the element passes or 0 if the
element fails.

IF Element
The IF element provides logical control of a test by evaluating a condition.

The IF element allows sub-elements to run only when the IF element’s
condition evaluates to true. After adding an IF element, you should add one
or more elements to perform a specific task.

3-15

3 Constructing a Test

Allowed Test Sections
The IF element can be used in the following test sections:

• Pre Test

• Main Test

• Post Test

Properties Pane
You can set the following property for the IF element.

• Condition — Enter a valid MATLAB expression that will evaluate to
true or false.

General Plot Element
The General Plot element is used to plot any type of data over multiple
iterations.

Use this element during the Main Test to generate plots of any test vectors or
test variables containing any type of data.

3-16

Basic Elements

Allowed Test Sections
The General Plot element can be used in the following test section:

• Main Test

3-17

3 Constructing a Test

General Tab
To add a plot:

1 Click the Add Plot button to create a plot.

2 From the drop-down list, select one of the following:

• plot— A standard line plot that uses a 2-D line graph with linear axes.

• Simulink data— Lets you plot data produced from a Simulink model.
The supported data types are such [time signal] array, a structure, a
structure with time, or a time series. Note that the element creates a
line for each signal in the Simulink data. If time is not present, the
signals are plotted against their indices.

You can also plot Simulink data provided by test vectors, such as the
Signal Builder Block test vector, the Simulink Design Verifier Data File
test vector, or the Spreadsheet Data test vector.

• bar — A standard bar plot that creates a bar graph.

• scatter — A standard scatter plot that creates a 2-D scatter graph
displaying markers at x- and y-coordinates.

• contour — A standard line plot that creates a 3-D contour graph
displaying isolines of a surface in a 3-D view.

• imagesc — An image plot with colormap scaling, which displays an
image and scales it to use the full colormap.

• surf — A standard surface plot that creates a 3-D surface plot that
displays a matrix as a surface.

• mesh— A standard surface plot that creates a 3-D mesh plot displaying
a matrix as a wireframe surface.

• More plots — Opens the Choose Plot Type dialog box, which lets you
choose any MATLAB plot. Select a plot type category in the Categories
list to display the plot types from the Plot Types list. Select an
individual plot type to read the Description.

3-18

Basic Elements

Add Axes Button

You can have multiple axes in a plot figure. To add an axes, click the Add
Axes button. Then click the Add Plot button to create the plot for that axes.
Each axes is added as a subplot to the parent figure.

You can set properties for each axes individually by selecting the axes and
then configuring properties in the Properties area. With the axes selected,
you can configure the X and Y labels and add a title and legend. With the plot
under the axes selected, you can configure the plot.

Properties

When the Figure node is selected or you have not yet added a plot, the Figure
name field is displayed. Optionally use this text field to name the plot.

When you select a plot type and it is added to the tree, the Properties section
displays the properties of that plot type. Fill in any parameters you want to
set. For more information on the parameters, see the help in the Choose Plot
Type dialog box when you select More Plots.

When you select an axes the axes properties are displayed. Use the X label
and Y label fields to enter names for the X and Y axes. Use the Title field to
enter a title for the plot. If you select the Include legend option, a legend
is added to the plot. The legend is located in the least used space outside of
the plot.

You can set other options for the General Plot element by clicking the
Options tab.

Plotting Simulink Data
You can plot data produced from a Simulink model. The supported data types
are such [time signal] array, a structure, a structure with time, or a time
series. Note that the element creates a line for each signal in the Simulink
data. If time is not present, the signals are plotted against their indices.

You can also plot Simulink data provided by test vectors, such as the Signal
Builder Block test vector, the Simulink Design Verifier Data File test vector,
or the Spreadsheet Data test vector.

3-19

3 Constructing a Test

The Simulink data types are plotted as follows:

• For an array, it is plotted against its indices.

• For a structure in the format generated by a Simulink Outport, its signal
values are plotted against its indices.

• For a structure with time in the format generated by a Simulink Outport,
its signal values are plotted against its time.

• For a structure with time in the format generated by the Signal Builder
Block test vector, its signal values are plotted against its time.

• For a Simulink.Timeseries object, the plot is determined by the plot()
function of the Simulink.Timeseries object.

Options Tab
These options control the test behavior pertaining to plots.

3-20

Basic Elements

The Each time the element executes option determines run-time behavior
of the element.

• Clear the figure of any previous iteration’s data – Every time the
element executes, the figure is cleared before plotting new data. This is
the default.

• Keep any existing data on the figure – Previous plots are not removed
from the figure. New data is added to the same figure.

The If this test is generating a report option determines what happens to
the snapshots of the plots that are created when each iteration runs.

• Put a snapshot of the figure into the report each iteration – A
snapshot of the plot is generated in each iteration and is displayed in its
respective section of the report. This is the default.

• Put a snapshot of the figure into the report at the end of the test –
Only one snapshot of the plot is taken, at the end of the completed test run.
It is displayed in the report section for Post Test.

• Do not put any snapshots into the report – No snapshots of plots are
added to the report.

Stop Element
The Stop element stops an iteration or an entire test unconditionally.

You can use the Stop element with conditional logic elements, such as the IF
element, to control the test’s execution.

Allowed Test Sections
The Stop element can be used in the following test sections:

• Pre Test

• Main Test

3-21

3 Constructing a Test

Properties Pane
You can set the following properties for the Stop element.

• When this element runs— Select a stop action for use in Main Test. The
Current iteration stops option stops the current Main Test iteration. The
All testing stops option stops all Main Test iterations and runs Post Test.

Note that when a Stop element is used in Pre Test, All testing stops is the
only option, since Pre Test does not have iterations.

• Display Message— Enter a message to display in the Test Report.

Subsection Element
Use subsection elements to organize one or more elements to maintain
readability of your test or to better manage complex test structures. Use
a subsection to:

• Group elements under a single root element.

• Organize tests.

• Manage complex test structures.

3-22

Basic Elements

Allowed Test Sections
The Subsection element can be used in the following test sections:

• Pre Test

• Main Test

• Post Test

Properties Pane
You can set the following properties for the Subsection element.

• Description — Type in your description of the subsection.

3-23

3 Constructing a Test

Deprecated Elements

In this section...

“Converting Elements” on page 3-24

“Scalar Plot Conversion Details” on page 3-26

“Vector Plot Conversion Details” on page 3-27

Converting Elements
The Scalar Plot and Vector Plot elements are being replaced by the General
Plot element that was introduced in R2008b. The General Plot element
supports all MATLAB plot types as well as Simulink data.

Note You can no longer create new Scalar Plot or Vector Plot elements. They
no longer appear in the Insert menu or the New Element button in the
SystemTest desktop.

Tests containing Scalar Plot or Vector Plot elements will not automatically
load with those elements. You will be prompted to convert them to General
Plot elements. For example, if you load a test containing a Scalar Plot
element, the following dialog box opens:

If you click the Details button, the dialog box shows the specific element(s)
that will be converted.

3-24

Deprecated Elements

In this case, the test contained one or more Scalar Plot elements.

Choose the conversion option as follows:

• Yes — Your Scalar Plot and/or Vector Plot elements are converted to
General Plot elements. The test is not saved until you explicitly do so.

See the next two sections for conversion details.

• No — Your Scalar Plot and/or Vector Plot elements are not converted to
General Plot elements. The test loads with the old elements. You can save
the test with the old elements. However, in a future release, you will not be
able to load the test until you convert the elements.

• Cancel — The test is not loaded.

For information about the General Plot element, see “General Plot Element”
on page 3-16.

3-25

3 Constructing a Test

Scalar Plot Conversion Details
When you convert a Scalar Plot element to a General Plot element, these
rules apply:

• Each Scalar Plot element maps one to one to a new General Plot element
with the same name.

• Each General Plot element is created with default values.

• For each row in the Lines to Plot table in the Scalar Plot element, these
actions occur in the same order as the rows appear in the table.

Scalar Plot Element Component What Is Loaded in the General
Plot Element

Plot Type drop-down list A “plot” plot type is added to the
axes.

X Axis drop-down list Mapped to X Data Source of the
newly added plot type.

Y Axis drop-down list Mapped to Y Data Source of the
newly added plot type.

Line Color drop-down list Mapped to Line color of the newly
added plot type.

Line Style drop-down list Mapped to Line style of the newly
added plot type.

Line Marker drop-down list Mapped to Line marker of the
newly added plot type.

Maximum Number of Points to
Display at Once option

This parameter is not converted and
is ignored.
Note that every point in the plot is
retained. There is no limit to the
number of points.

3-26

Deprecated Elements

This figure shows an example of a Scalar Plot element (left) converted to a
General Plot element (right).

Vector Plot Conversion Details
When you convert a Vector Plot element to a General Plot element, these
rules apply:

• Each Vector Plot element maps one to one to a new General Plot element
with the same name.

• Each General Plot element is created with default values.

• For each row in the Lines to Plot table in the Vector Plot element, these
actions occur in the same order as the rows appear in the table.

3-27

3 Constructing a Test

Vector Plot Element Component What Is Loaded in the General
Plot Element

Plot Type selector A “plot” plot type is added to the
axes.

X Axis drop-down list Mapped to X Data Source of newly
added plot type. If the selection was
“none” it is mapped to “<Auto>”.

Y Axis drop-down list Mapped to Y Data Source of the
newly added plot type.

Line Color drop-down list Mapped to Line color of the newly
added plot type.

Line Style drop-down list Mapped to Line style of the newly
added plot type.

Line Marker drop-down list Mapped to Line marker of the
newly added plot type.

Subplot Dimensions area This is not converted and is ignored.

Clear axes between iterations
option

If selected, on the Options tab, the
Clear the figure of any previous
iteration’s data option becomes
selected. If cleared, the Keep any
existing data on the figure check
box becomes selected.

3-28

Deprecated Elements

This figure shows an example of a Vector Plot element (left) converted to a
General Plot element (right).

3-29

3 Constructing a Test

3-30

4

Using the Simulink
Element

• “Simulink Element” on page 4-2

• “Before You Begin” on page 4-3

• “Configuration of a Simulink Element” on page 4-5

• “Override Inport Block Signals” on page 4-22

• “Simulink Model Coverage” on page 4-38

• “Use Simulink® Design Verifier™ Test Cases” on page 4-46

• “Use Signal Builder Block Test Cases” on page 4-47

• “Test Cases and Signals in Simulink Element” on page 4-48

4 Using the Simulink Element

Simulink Element
The Simulink element allows you to override the inputs to a Simulink model
with SystemTest test vectors and test variables. You can further map the
model’s outputs to SystemTest test variables for later processing by other
test elements. This means that you can use the SystemTest software to
define, generate or load input data, feed it into Simulink, run the model while
iterating over the input data, and map the outputs back into the SystemTest
software.

Note In Simulink elements, you cannot have more than one model with the
same name. Each model referenced within a test must have a unique name.
If you ran a test containing two models with the same name, the SystemTest
software would only use one of the models.

4-2

Before You Begin

Before You Begin
Load the Inverted Pendulum example from MATLAB and delete the Simulink
element from the example. The following steps describe how to do this:

1 Start MATLAB.

2 Enter the following command at the MATLAB command line:

systemtest InvertedPendulum

The SystemTest desktop opens with the Inverted Pendulum example
loaded.

3 Click the Simulink element in the Test Browser.

4-3

4 Using the Simulink Element

4 Click the Delete element button in the Test Browser button bar or press
the Delete key.

4-4

Configuration of a Simulink Element

Configuration of a Simulink Element

In this section...

“Introduction” on page 4-5

“Add a Simulink Element” on page 4-5

“Specify the Simulink Model” on page 4-7

“Override Simulink Model Inputs” on page 4-7

“Map Simulink Model Outputs to Test Variables” on page 4-13

“Model Output Mappings Assistant” on page 4-20

“Edit a Test Vector or Test Variable from within the Element” on page 4-21

Introduction
To help you learn how to use the Simulink element, this section walks you
through the configuration of the Simulink element for the Inverted Pendulum
test. The Inverted Pendulum example includes both a model of the pendulum
and a model of a controller that keeps the inverted pendulum balanced.
Moving the bottom of the pendulum disturbs the equilibrium, causing the
pendulum to move and the controller to rebalance it. The Inverted Pendulum
test varies the mass of the pendulum, the mass of the cart the pendulum is
on, and the distance to the pendulum’s center of mass, testing the robustness
of the controller as it attempts to return the pendulum to equilibrium. Using
the Simulink element in a test lets you vary the model inputs and assess
the model outputs.

Note The following sections assume you have loaded the Inverted Pendulum
example and deleted the Simulink element, as explained in “Before You
Begin” on page 4-3.

Add a Simulink Element
To add a Simulink element to a test, click the New > Test Element button
in the Test Browser and select the Simulink element. If you have a license

4-5

4 Using the Simulink Element

for Simulink, the element list contains the Simulink element, as shown in
the following figure.

The SystemTest software adds the Simulink element to the test and opens the
Simulink element Properties pane.

4-6

Configuration of a Simulink Element

Specify the Simulink Model
When you first add the element, the icon in the Test Browser has a red x,
meaning that the element requires some information. The Simulink model
field in the Simulink element Properties pane is outlined in red, indicating
that it is a required field. You must specify the model that the Simulink
element will interact with. If the model is on the MATLAB path, you can type
its name in the Simulink model field. If you are not sure of the name, or
the model is not on the path, you can browse to its location using the browse
button.

For the Inverted Pendulum example, type systemtestpendulum in the
Simulink model field and press Enter. The SystemTest software opens
the systemtestpendulum model in Simulink and opens the Pendulum
Visualization window.

Override Simulink Model Inputs
Using test vectors and test variables, you can override the following Simulink
model inputs:

• Block parameters — Described in “Override Simulink Block Parameters”
on page 4-7

• Model and base workspace variables — Described in “Override to
Workspace Variables” on page 4-9

• Inport signals — Described in “Override Simulink Model Inport Signals”
on page 4-11

Override Simulink Block Parameters
You can override Simulink block parameters with SystemTest test vectors
or test variables. When you run the test, Simulink runs the model using
data provided by the SystemTest software. Overriding does not change your
Simulink model file; it only overrides in the test. The procedure for creating
block parameter overrides requires that you select your block in the Simulink
model, but everything else you need to do happens within the Simulink
element Properties pane.

4-7

4 Using the Simulink Element

To override a Simulink block parameter:

1 In the Mappings tab of the Properties pane for the Simulink element
in the SystemTest software, expand the Override Block Parameters
with SystemTest Data section and click the New Mapping button,
and select Select Block to Add. This opens the model in Simulink, if it
is not already open.

2 In the Simulink model window, click the block containing the parameter
you want to override. For this example, click the Pendulum block in the
systemtestpendulum model window.

3 In the SystemTest software, return to the Simulink element Properties
pane and, in the Override Block Parameters section, you’ll see that
the Pendulum was added. If you click the New Mapping button again,
you’ll see that the SystemTest software also adds an entry to this menu
for the block.

In the override table, the Simulink Data field shows that this entry is
linked to the Pendulum block but the question mark (?) indicates that no
parameter for the block has been mapped.

4-8

Configuration of a Simulink Element

4 Select the parameter from the block that you want to map. Click the
Simulink Data field for the block and select a parameter from the list. For
the Inverted Pendulum example, select Pendulum:Mass of cart (kg).

5 Specify the SystemTest test vector or test variable you want to map to
this block parameter. Click the SystemTest Data field for the block
parameter. This shows you all defined SystemTest test vectors and test
variables available for mapping. For this example, select cart.

Override to Workspace Variables
You can use a SystemTest test vector or test variable to override either a
MATLAB base workspace variable or a Simulink model workspace variable.
This lets you define test values and conditions in the SystemTest software
and have a Simulink model act on them.

This section describes how you can use the values in the pend and distance
test vectors to override the model workspace variables masspend and
penddistance in the Inverted Pendulum example.

4-9

4 Using the Simulink Element

To override workspace variables:

1 Expand the Override MATLAB and Model Workspace Variables with
SystemTest Data area of the Simulink element Properties pane, and
click the New Mapping button.

2 Select the workspace variable you want to override. Click the Simulink
Data field of this row to see all available base workspace variables and
Simulink model workspace variables. For the Inverted Pendulum example,
select masspend.

3 Specify which SystemTest test vector or test variable you want to map to
the Simulink workspace variable. Click the SystemTest Data field of this
row to see all available test vectors and test variables. For this example,
select pend.

4-10

Configuration of a Simulink Element

4 Repeat steps 1 to 3 to override the Simulink model workspace variable
penddistance with the SystemTest test vector distance.

Override Simulink Model Inport Signals
As with block parameters and workspace variables, you can use the
SystemTest software to override a model’s inport signals. This lets you
externally manipulate the input signal of a Simulink model.

The Inverted Pendulum example does not override any inport signals.

For information on how to override inport signals and an example, see
“Override Inport Block Signals” on page 4-22.

4-11

4 Using the Simulink Element

Optimizing Test Vectors to Work with Inport Signals

Simulink allows you to import input signal and initial state data from the
MATLAB workspace and export output signal and state data to the MATLAB
workspace during simulation. In the SystemTest software, you can specify
the contents of a test vector so that it is used as a Simulink inport. To do that,
use the vector as the mapping in your Simulink element, by selecting it in the
SystemTest Data row as described above.

The Simulink documentation contains guidance on importing data to
Simulink inport signals. You can create the same type of data in your
SystemTest test vectors that you then map to inport signals.

Example for Overriding Inport Signals Using Data Arrays

One of the data formats described in “Data Format for Exported Simulation
Data” is the use of data arrays for specifying input data to an Inport block.
This example uses the systemtestinputdemo model to illustrate how the
SystemTest software can be used to override the three Inport blocks in the
model with test signals.

The first step involves constructing a test vector that specifies the different
signal test cases. This can be done by creating a MATLAB function that
simply returns a test vector containing the different test cases you would
like to use for each test iteration. A sample MATLAB function, called
GETTESTVECTOR, that does this is provided below.

4-12

Configuration of a Simulink Element

Once this function is saved as GETTESTVECTOR, you can create a
SystemTest test vector whose expression is set to GETTESTVECTOR. This
will create a 1-by-3 test vector cell array within the SystemTest software,
where each entry in the cell array represents the time and signal data for
the three Inport blocks.

Map Simulink Model Outputs to Test Variables
Using test variables you can assign the output from the following types of
Simulink model data:

• Logged signals — Described in “Map Simulink Logged Signals to Test
Variables” on page 4-14

• Outport signals — Described in “Map Simulink Outport Signals to Test
Variables” on page 4-16

• To Workspace blocks — Described in “Map Simulink To Workspace Blocks
to Test Variables” on page 4-18

After you map model outputs to test variables, you can incorporate the model
data into the SystemTest software. This section shows you how to map this
data for the Inverted Pendulum example.

4-13

4 Using the Simulink Element

Note The output from Simulink models can only be mapped to SystemTest
test variables. You cannot map this output to SystemTest test vectors.

Note If you are mapping logged signals, outport signals, or To Workspace
blocks to test variables, as shown in the following procedures, then you can
optionally use the Mappings Assistant if you want the variables to have the
same names as the inputs. This is useful if your model contains many signals
or blocks and you want to name the outputs the same way. You no longer
have to create test variables with matching names manually. See “Model
Output Mappings Assistant” on page 4-20 for more information.

Map Simulink Logged Signals to Test Variables
Logged signals are a way to obtain outputs from a model without adding more
outports. Using logged signals, you can identify a particular signal and map
the output to a SystemTest test variable.

To map logged signals to a SystemTest test variable:

1 Expand the Assign Model Outputs to SystemTest Data section of the
Simulink element Properties pane, and click the New Mapping button.
From the list, select Logged Signal. The SystemTest software adds a
row for a new mapping of this type.

2 Specify the signal you want to capture. Click the Simulink Data field
to see all the signals in the model. For the Inverted Pendulum example,
select pendout.

4-14

Configuration of a Simulink Element

Note If you added logged signals to your model and they do not appear
in this list, click the refresh button, on the Properties pane next to the
model name, to update the list.

3 Specify the SystemTest test variable to which you want to map the output.
Click the SystemTest Data field and select a test variable. For the
Inverted Pendulum example, select st_loggedsignal.

The SystemTest software creates the mapping to the test variable.

4-15

4 Using the Simulink Element

Note If you are mapping logged signals to test variables, as shown in the
above procedure, then you can optionally use the Mappings Assistant if you
want the variables to have the same names as the inputs. This is useful if
your model contains many signals or blocks and you want to name the outputs
the same way. You no longer have to create test variables with matching
names manually. See “Model Output Mappings Assistant” on page 4-20 for
more information.

Map Simulink Outport Signals to Test Variables
The SystemTest software lets you map all outport signals to a test variable
for further processing in the SystemTest software.

To map Simulink outport signals to a test variable:

1 In the Assign Model Outputs to SystemTest Data section of the
Simulink element Properties pane, click the New Mapping button. From
the list, select Outport Signal. The SystemTest software adds a row for a
new mapping of this type.

2 Specify the outport signal you want to capture. Click the Simulink Data
field and select a signal. For this example, select Out1.

4-16

Configuration of a Simulink Element

3 Specify the SystemTest test variable to which you want to map the outport
signals. Click the SystemTest Data field and select a test variable from
the list. For this example, select st_outportsignal.

The SystemTest software creates the mapping to the test variable.

Note If you are mapping outport signals to test variables, as shown in the
above procedure, then you can optionally use the Mappings Assistant if you
want the variables to have the same names as the inputs. This is useful if
your model contains many signals or blocks and you want to name the outputs
the same way. You no longer have to create test variables with matching
names manually. See “Model Output Mappings Assistant” on page 4-20 for
more information.

4-17

4 Using the Simulink Element

Map Simulink To Workspace Blocks to Test Variables
When Simulink runs a model with To Workspace blocks, these blocks save
model information in the MATLAB workspace as variables. Using the
SystemTest software, this data can be mapped to SystemTest test variables.

This section shows how you create To Workspace block mappings in the
SystemTest software using the Inverted Pendulum example.

To map the To Workspace block:

1 In the Assign Model Outputs to SystemTest Data section of the
Simulink element Properties pane, click the New Mapping button. From
the list, select To Workspace Block. The SystemTest software adds a
row for a new mapping of this type.

2 Specify the To Workspace block in the model that you want to capture.
Click the Simulink Data field and select the block from the list. For this
example, select To Workspace.

3 Specify the SystemTest test variable to which you want to map the To
Workspace block. Click the SystemTest Data field and select a test
variable from the list. For this example, select New Test Variable to
create a test variable.

4-18

Configuration of a Simulink Element

The SystemTest software opens the Edit Variable dialog box. Assign a
name to the test variable and optionally an initial value, and then click
OK. Name the test variable ToWSResult.

4-19

4 Using the Simulink Element

The SystemTest software creates the mapping to the new test variable and
adds the new test variable to the list in the Test Variables pane.

Note If you are mapping To Workspace blocks to test variables, as shown
in the above procedure, then you can optionally use the Mappings Assistant
if you want the variables to have the same names as the inputs. This is
useful if your model contains many signals or blocks and you want to name
the outputs the same way. You no longer have to create test variables with
matching names manually. See “Model Output Mappings Assistant” on page
4-20 for more information.

Model Output Mappings Assistant
If you are mapping logged signals, outport signals, or To Workspace blocks
to test variables, for example in the procedures in the above section “Map
Simulink Model Outputs to Test Variables” on page 4-13, then you can
optionally use the Mappings Assistant if you want the variables to have the
same names as the inputs. This is useful if your model contains many signals
or blocks and you want to name the outputs the same way. You no longer have
to create test variables with matching names manually. Using the Mappings
Assistant is the preferred method of setting up mappings since it is easier.

1 In the Assign Model Outputs to SystemTest Data section of the
Simulink element, click theMappings Assistant button above the table.

2 In the Model Output Mappings Assistant dialog box, choose your
mapping(s) in the Create mappings for each section.

4-20

Configuration of a Simulink Element

• If your model contains any logged signals, the Logged Signals option is
available. Select the option to map the logged signal(s) to test variable(s).
If the model contains no logged signals, this option is disabled.

• If your model contains any outport signals, the Outport Signals
option is available. Select the option to map the outport signal(s) to
test variable(s). If the model contains no outport signals, this option
is disabled.

• If your model contains any To Workspace blocks, the To Workspace
Blocks option is available. Select the option to map the block(s) to test
variable(s). If the model contains no To Workspace blocks, this option
is disabled.

3 Click OK to create the mappings.

The Simulink Data column then displays the names of the logged
signals, outports, or To Workspace blocks that the model contained. The
SystemTest Data column displays the test variables created with the
same name.

For example, if the model contains two outports called Out1 and Out2, the
Simulink Data column displays Out1 and Out2, and the SystemTest
Data column displays Out1 and Out2 to represent the test variables that
were created.

Edit a Test Vector or Test Variable from within the
Element
If you want to edit a test vector or test variable while working in the Simulink
element, you can open the appropriate editor by right-clicking on the name of
the test vector or test variable in any of the tables on theMappings tab.

4-21

4 Using the Simulink Element

Override Inport Block Signals

In this section...

“Introduction” on page 4-22

“Override Inport Block Signals in a Simulink Element” on page 4-23

“Inport Block Mappings Assistant” on page 4-27

“Override Simulink Inport Blocks Using a Spreadsheet Data Test Vector”
on page 4-28

“Map Logged Signals from a Model to Inport Blocks” on page 4-36

“Edit a Test Vector or Test Variable from within the Element” on page 4-37

Introduction
The examples in “Configuration of a Simulink Element” on page 4-5 described
how to override block parameters and workspace variables. Similarly, you can
override signals to root-level Inport blocks in Simulink with SystemTest data.

Because the Simulink element uses the Inport block names, not the port
numbers, your test works even if you reorder the Inport blocks in the model.

Some users store signal values in a Microsoft Excel spreadsheet or .csv file.
You can create a test vector that reads values from a spreadsheet and use
that as your Inport block signal mapping. The “Override Simulink Inport
Blocks Using a Spreadsheet Data Test Vector” on page 4-28 section shows
such a scenario.

You can also store signal values in a MAT-file and then create a test vector
that reads the values from the MAT-file. The “Map Logged Signals from a
Model to Inport Blocks” on page 4-36 section shows this scenario.

4-22

Override Inport Block Signals

Override Inport Block Signals in a Simulink Element
To override Inport block signals:

1 If you have a model that contains Inport blocks and you have created a
Simulink element that uses that model, click the Mappings tab inside
the Simulink element.

2 Expand the Override Inport Block Signals with SystemTest Data
section by clicking the expander arrow on the right side of the section title.

3 Designate your mappings.

The user interface indicates how many Inport blocks your model contains.
For example, the model used in the Simulink Input example contains three
Inport blocks, as shown here. You can open this example by typing the
following in the MATLAB command line:

systemtest SimulinkInputDemo1

4-23

4 Using the Simulink Element

The first option, Do not override Inport block signals, is selected by
default. That means the test will run the model without modifying any
Inport block settings. Any data the Inport blocks are configured to use will
be used during execution. If you want to override the model, use one of
the other two options.

The All Inport blocks are mapped using option allows you to map data
to all Inport blocks at once. Use the drop-down list to choose an existing
test vector or test variable, or to create a new one. This supports any data
format the Simulink model supports. For example, it could be a test vector

4-24

Override Inport Block Signals

that is an array of time and three signal values, such as [time, U1, U2,
U3].

If you want to map individual Inport blocks, select the Individual Inport
blocks are mapped using option.

When you select this option, the mapping table becomes editable. In the
case shown here, In1 and In2 are being overridden with SystemTest data,
and In3 is using the value in the model.

4-25

4 Using the Simulink Element

The table displays all Inport blocks contained in the model. By default,
the SystemTest Data column is assigned as Inherit from model. This
is especially convenient if you have a large number of Inport block signals
and only want to override a small number of them in your test. You would
just change the SystemTest Data column value for the ones you want
to override.

You can update the list of Inport blocks that are displayed in the table
by clicking the Open and update model state button in the Simulink
element. The Inports listed in the table are sortable.

Note If you open a TEST-File and do not see the Inport blocks from your
model reflected in the Simulink element, click the Open and update
model state button:

to populate the Inport table.

Note If you have variables in a Spreadsheet Data test vector or a
MAT-File test vector, you can optionally use the Mappings Assistant. Click
the Mappings Assistant button above the table. For more information
on using the Mappings Assistant, see “Inport Block Mappings Assistant”
on page 4-27.

4 If you are using the map all option or individual mappings, you need to
define the test signal time and the end time. If you are using the inherit
from model option, skip this step since the time options do not apply to
inherited mappings.

In the Define test signal time option, you can specify the simulation time
signal to provide to the model. To specify the time signal using a test vector
or test variable, select Map test signal time to. To specify a time signal
based on a desired simulation time step, select Manually specify a time
step and then enter a valid time step, which must be a positive number.

4-26

Override Inport Block Signals

In the To calculate end time of simulation option, either use the model’s
stop time, or use the signal’s end time based on the time step you specified.
The Use model stop time option stops the simulation of the model at
the end time configured in the model. The Use signal’s end time option
stops the simulation of the model at the end of the test signal, temporarily
overriding the end time of the model with the test signal end time.

Note The Define test signal time option and the To calculate end
time of simulation option are disabled if all individual Inport mappings
are set to inherit from the model.

Inport Block Mappings Assistant
If you are overriding Inport block signals, as shown in “Override Inport Block
Signals in a Simulink Element” on page 4-23, then you can optionally use
the Mappings Assistant when you use the Individual Inport blocks are
mapped using option.

1 When overriding Inport block signals, select the Individual Inport
blocks are mapped using option.

2 Click theMappings Assistant button above the table. This button is only
available when you are configuring individual mappings.

3 In the Inport Block Mappings Assistant dialog box, choose your mapping in
the Override each Inport block using section.

• If you are using a Spreadsheet Data test vector, select the A
spreadsheet test vectors headers option. Then in the drop-down list,
select an existing Spreadsheet Data test vector, or create a new one.

• If you are using a MAT-File test vector, select the A MAT-File test
vectors selected variables option. Then in the drop-down list, select
an existing MAT-File test vector, or create a new one.

• If you have a test variable whose name matches the Inport block, select
the An existing test variable with a matching name option.

4 The If an Inport block name cannot be matched section determines
what happens in the case of one or more variables in the selected test

4-27

4 Using the Simulink Element

vector not matching an Inport block name. Select the option you want the
Simulink element to perform. Inherit from Model is the default.

5 The Summary section displays information on how many root-level Inport
blocks are found in the model, how many are mapped to the test vector you
selected if you are mapping from a test vector, and how may will use the
option you chose in step 4 in the case of non-matches.

When you are finished configuring the mappings and viewing the summary,
click OK to create the mappings.

The mappings are then displayed in the table.

Override Simulink Inport Blocks Using a Spreadsheet
Data Test Vector
In this example, a Simulink element is being used to test a model of a fuel
rate controller. To see the test and the model, open the example by typing the
following at the MATLAB command line:

systemtest('demosystest_fuelctrlsldv.test');

The model has four Inport blocks that represent throttle angle, engine speed,
exhaust gas, and manifold pressure.

4-28

Override Inport Block Signals

The tester has values for these four blocks in a Microsoft Excel spreadsheet.
It contains 37 sets of generated values for the blocks. Each set of values is on
a different sheet within the spreadsheet, representing a testing scenario for
the model. One of the sheets is shown here.

4-29

4 Using the Simulink Element

Column A represents the simulation time signal. Columns B through E
represent test data for the four Inports in the model. Each of the 37 sheets is
set up the same way but contains different values.

To set up the test vector that reads the data from the spreadsheet:

1 Create the test vector by clicking theNew button in the Test Vectors pane.

2 In the Insert Test Vector dialog box, select Spreadsheet Data as the
vector type.

3 On the General tab, name the test vector InputSignal.

4 Click the Add File button and browse to the Microsoft Excel spreadsheet.

4-30

Override Inport Block Signals

5 Click the Select All button to select all sheets in the spreadsheet file.

6 On the Data Selection tab, keep the default of column in the Data is
arranged by option.

7 In the Read data from column option, enter A to E, starting at row 1.

4-31

4 Using the Simulink Element

8 Select the First row is a header option, since you can see in the above
figure of the spreadsheet that row 1 of the file contains text labels.

9 Select the Treat each selected sheet as a test vector value option.

The configured test vector appears as follows.

10 Click OK in the Insert Test Vector dialog box.

4-32

Override Inport Block Signals

The new vector appears in the table in the Test Vectors pane. You can see
that the length is 37 because there are 37 sheets in the spreadsheet file and
each sheet is being treated as one value in the vector.

4-33

4 Using the Simulink Element

Now that the test vector is set up, you can set up the Simulink element to
override the Inport blocks using the test vector values from the underlying
spreadsheet file.

1 Create a Simulink element by clicking New > Test Element > Simulink
button in the Test Browser.

2 Click the browse button to locate the Fuel Rate Controller model.

3 On theMappings tab, expand the Override Inport Block Signals with
SystemTest Data section if it is not open.

4 Select the Individual Inport blocks are mapped using option. The four
Inport blocks appear in the table.

5 For each Inport block, use the drop-down list in the SystemTest Data
column to override the Inport block with the appropriate data in the test
vector that was created earlier.

For example, for throttle, click the drop-down list, expand the InputSignal
test vector entry, and select throttle. Do the same for the other three
signals.

The entries under the InputSignal test vector represent the underlying
columns in the spreadsheet. Since the Spreadsheet Data test vector called
InputSignal was created using the columns and the headers, the columns
appear named with their headers in the list for easy identification, for
example, InputSignal(throttle).

6 In the Define test signal time option, select Map test signal time to
and choose InputSignal(Time).

Time is the first column in the spreadsheet and contains the simulation
time signal for the model. The test will use these time step values when
the Simulink element is executed.

7 Select the Use signal’s end time option, so that the end times provided in
the spreadsheet are used.

The configured Simulink element appears as follows.

4-34

Override Inport Block Signals

When the test is executed, the Simulink element will test the model using the
Inport block signals mapped from the spreadsheet.

4-35

4 Using the Simulink Element

Map Logged Signals from a Model to Inport Blocks
You can map logged signals from a Simulink model, including bus signals,
to Inport blocks of a model using the Simulink element and a test vector or
test variable that contains the logged signal data.

A common usage scenario is to log the signals while running a model and
store them in a MAT-file. Then you can acquire them from the Mat-file using
a MAT-File test vector and map that data to Inport blocks in the Simulink
element. The following high-level steps outline this usage scenario.

1 Do one of the following:

Run your model that contains signals. The signals are logged as variables
in the MATLAB workspace. Save the variables as a MAT-file.

OR

Alternatively, use MAT-file(s) that have already been created and saved.

2 In the SystemTest software, create a MAT-File test vector using the
MAT-file that your signals are saved in. See “MAT-File Test Vectors” on
page 2-14 for more information on MAT-File test vectors.

3 Add a Simulink element to your test, and select the model that you want
to test.

4 In the Override Inport Block Signals with SystemTest Data section,
select the All Inport blocks are mapped option.

5 From the drop-down list, select the MAT-File test vector you created, and
drill down into the variable that represents the signal you want to use.
This is how you map the logged signals to the Inport blocks.

Note that the logged signal(s) and the Inport block(s) must have exactly the
same name(s) for the Simulink element to simulate the model successfully.
See the usage notes below.

6 Run the test.

4-36

Override Inport Block Signals

Important Usage Notes

– The logged signal(s) and Inport block(s) must have identical names that
match exactly. To use this feature, each Inport block name must match a
corresponding signal name within the logged data. If it does not, you can
rename the Inport block or the signal in the logged data to avoid an error.
You can have other signals in the logged data, but each Inport block must
exactly match a signal name.

– The following data types are supported:

• Simulink.Timeseries.

• Simulink.TsArrays.

• Simulink.SubsysDataLogs.

Edit a Test Vector or Test Variable from within the
Element
If you want to edit a test vector or test variable while working in the Simulink
element, you can open the appropriate editor by right-clicking on the name of
the test vector or test variable in any of the tables on theMappings tab.

4-37

4 Using the Simulink Element

Simulink Model Coverage
The model coverage feature provided by the Simulink® Verification and
Validation™ software allows you to control the generation of coverage
metrics for a Simulink model from within your SystemTest test. Model
coverage metrics allow you to validate your model by identifying unexecuted
subsystems, unselected switch positions, or untaken conditional transition
paths. You can generate a cumulative coverage report, specify individual
coverage options, or inherit a model’s coverage settings.

Note To use the model coverage feature, you need a license for Simulink
Verification and Validation.

The following basic steps describe the typical work flow to use this feature:

1 Use an existing Simulink element or add one by clicking the New > Test
Element button and selecting Simulink.

2 On the Properties pane, browse for your Simulink model using the browse
button next to the Simulink model field.

To see an example, you can run the Signal Builder example by typing
systemtest demosystest_sigblder in MATLAB.

3 Configure the Simulink element as described in this chapter, using the
Mappings tab of the Properties pane to define model overrides and map
Simulink data to test variables.

4 On the Model Coverage tab, which appears if you have a license for
the Simulink Verification and Validation software, select the Enable
model coverage check box. The following figure shows the Signal Builder
example.

4-38

Simulink® Model Coverage

5 If you want to use the model coverage settings you already have on the
Simulink model, select the Inherit coverage metric settings from the
model option. Then go to step 12.

When you use this option, if the settings on the model change, the inherited
settings will also change.

4-39

4 Using the Simulink Element

6 If you want to override the existing settings, select the Override model
coverage metric settings option.

These settings are independent of the model.

7 Select Coverage for this model: <modelname>.

4-40

Simulink® Model Coverage

8 Click the Select Subsystem button in the Overridden Coverage
Metrics section to specify the root model of your coverage data. Make your
selection in the System Selector dialog box and click OK.

9 If you have one or more referenced models and you want to gather coverage
for them, select the Coverage for referenced models option.

Then click the Select Models button to select the referenced model(s) for
coverage. Make your selection in the Select Models for Coverage Analysis
dialog box and click OK.

Note that you can record coverage only for referenced models that operate
in Normal mode. You cannot enable coverage for referenced models
operating in Accelerated mode.

10 If you have MATLAB functions in your model that you want to test, select
the Coverage for MATLAB files option. This enables coverage for
MATLAB functions called from your model.

11 In the Coverage Metrics area, select the metrics you require. The
selected metrics will be generated and shown in the coverage report.

4-41

4 Using the Simulink Element

Summary of coverage metrics:

Decision — analyzes elements that represent decision points in a model,
such as a Switch block or Stateflow states.

Condition— analyzes blocks that output the logical combination of their
inputs, such as the Logical Operator block, and Stateflow transitions.

MCDC — modified condition/decision coverage analysis extends the
decision and condition coverage capabilities. It analyzes blocks that
output the logical combination of their inputs and Stateflow transitions
to determine the extent to which the test case tests the independence of
logical block inputs and transition conditions.

Lookup Table — examines blocks, such as the n-D Lookup Table block,
that output information from inputs in a table of inputs and outputs,
interpolating between or extrapolating from table entries. Lookup table
coverage records the frequency that table lookups use each interpolation
interval.

Signal Range — records the minimum and maximum signal values at
each block in the model, as measured during simulation. Only blocks with
output signals receive signal range coverage.

Signal Size — records the minimum, maximum, and allocated size for
all variable-size signals in a model.

Simulink Design Verifier — collects model coverage data for some
Simulink Design Verifier blocks.

12 Use the Map Coverage Data to SystemTest Variables field to map
coverage metrics to test variables. Click New Mapping and select Full
Coverage Instrumentation Path if you want coverage data below the

4-42

Simulink® Model Coverage

root you specified under Coverage for this model, or select Select Path
to Map if you want to pick an alternate coverage path, which must be
within the coverage instrumentation path. If you select the latter, your
Simulink model will open and you can select a block to specify an alternate
root for your coverage path.

13 Select the Metric you want to map to a test variable, and specify the test
variable to use under the SystemTest Data column.

Note that if you select <New Test Variable> in the SystemTest Data
column, the default name will match the input. For example, if the model
name is systemtestpendulum from the Coverage Path column, and the
metric you select in theMetric column is MCDC Coverage then the default
name for the new variable would be systemtestpendulum_mcdcinfo. The
logical default name reflects the name of the model and the metric. You
can use the default name or change it.

14 Run your test.

15 View the coverage report by clicking the link in the Run Status pane.

4-43

4 Using the Simulink Element

For more information on the model coverage feature, including details
about the coverage metrics, see “Model Coverage Analysis”.

4-44

Simulink® Model Coverage

4-45

4 Using the Simulink Element

Use Simulink Design Verifier Test Cases
The Simulink Design Verifier Data File test vector can read test cases
created by Simulink Design Verifier. To use this test vector, you must have a
Simulink Design Verifier data file with test cases.

You first create a Simulink Design Verifier test harness and set the generate
SystemTest harness option in the Configuration Parameters in Simulink.
Then you can do one of two things:

• Generate a SystemTest harness for the model from Simulink. When it
completes, a new test opens automatically in SystemTest and a Simulink
Design Verifier Data File test vector is automatically created for you. A
Simulink element is also automatically created, with links to the model,
override mappings set, and model coverage enabled if your model uses
that feature. For more information, see “Create SystemTest Harness from
Simulink® Design Verifier™” on page 2-55.

• If you already have a data file from Simulink Design Verifier, you can
create a test vector in SystemTest that uses the data, and create a Simulink
element and configure overrides in it. For more information, see “Create a
Simulink Design Verifier Test Vector” on page 2-57.

4-46

Use Signal Builder Block Test Cases

Use Signal Builder Block Test Cases
If you use a Signal Builder block in a Simulink model, you can use the test
cases in a SystemTest test.

The most common workflow for this feature is to create a Simulink element
using the model containing the Signal Builder block, and create a Signal
Builder Block test vector from within the element. For an example of this
procedure, see “Create Signal Builder Block Test Vectors” on page 2-69.

4-47

4 Using the Simulink Element

Test Cases and Signals in Simulink Element
You can create signals in the SystemTest software and use them to test a
Simulink model. The Test Case Editor provides a graphical way of creating,
editing, and visualizing signal data in SystemTest. You can then map signals
in the Simulink element using a Test Case Data test vector.

Here is an example of one possible high-level workflow of using test cases and
signals in your test via the Simulink element. You will create a Test Case
Data test vector, set up signals in the Test Case Editor, and then map Inport
blocks to the signals in a Simulink element.

1 In the Test Vectors pane, click the New button.

2 Select Test Case Data as the test vector type. Click OK to create it.

For more information, see “Create a Test Case Data Test Vector” on page
5-6

3 In the Test Vectors pane, select the Test Case Data test vector you just
created.

4 Click the Open Test Case Editor button to open the tool.

5 In the Test Case Editor, add one or more test cases using the Add Test
Case button.

For more information, see “Create Test Cases” on page 5-13.

6 Select a test case and add one or more signals to it using the Add Signal
button. If you plan to map these signals to Inport blocks in your model, you
could create the signals with the same names as the blocks. They are not
required to be the same name, but making them the same name allows the
Mapping Assistant to work (in a later step).

See “Add Signals to Test Cases” on page 5-18 for more information on this
step.

7 For each signal, append the desired segment or segments to create the
signal to use, and configure its attributes as needed.

4-48

Test Cases and Signals in Simulink Element

See “Add Signals to Test Cases” on page 5-18 for more information on this
step.

8 Once you have created and edited the test case or cases and signals that
you need, close the Test Case Editor by clicking the OK button at the
bottom of the window. When you close the tool, the SystemTest software
saves the data in the Test Case Data test vector.

9 Return to the SystemTest desktop. You can now use the Test Case Data
test vector and the signals it contains in your test, via the Simulink
element, the Limit Check element, and the General Plot element.

10 Use an existing Simulink element or add one by clicking the New > Test
Element button and selecting Simulink.

11 On the Properties pane, browse for your Simulink model using the
Browse button next to the Simulink model field.

Suppose you are using the following model, which has four Inport blocks
that represent throttle angle, engine speed, exhaust gas, and manifold
pressure of an automobile fuel controller.

4-49

4 Using the Simulink Element

12 In this case, you want to map signals you created in the Test Case Editor to
these four Inports in your model. Use the Override Inport Block Signals
with SystemTest Data section of the Simulink element.

You must use the Individual Inport blocks are mapped using option.
Note that you cannot use the All Inport blocks are mapped using
option. You can map the individual Inports by selecting the signal under
the expanded test vector that matches the Inport block in each row of the
table, as shown here.

4-50

Test Cases and Signals in Simulink Element

You could also use the Mappings Assistant (click the Mappings Assistant
button to open it) and select them all at once by selecting the Test Case
Data test vector in the A test case data test vector’s signals override
option, as shown next.

4-51

4 Using the Simulink Element

When you click OK in the Mappings Assistant, the signals are entered into
the SystemTest Data column in the table, and the test uses the signals’
time by default.

4-52

Test Cases and Signals in Simulink Element

13 Set up any other elements for the test.

14 Run the test.

Note When using a Test Case Data test vector to simulate your model as
described in this example, the Interpolate data option in the Simulink Block
Parameters of your model’s Inport blocks will be turned on. This allows data
coming from signals containing segment types like Ramp and Custom to
accurately reflect their value when sampled.

After the test runs, the Interpolate data option will be restored in your
model.

4-53

4 Using the Simulink Element

4-54

5

Author Signals in the Test
Case Editor

• “Signal Authoring for Test Data” on page 5-2

• “Author and Use Signals in Tests” on page 5-4

• “Create a Test Case Data Test Vector” on page 5-6

• “Create Test Cases, Signals, and Buses” on page 5-9

• “Link to Requirements in Telelogic® DOORS®” on page 5-38

• “Test Cases and Signals in SystemTest Elements” on page 5-49

• “Programmatic Test Case and Signal Authoring” on page 5-56

5 Author Signals in the Test Case Editor

Signal Authoring for Test Data
You can create signals in the SystemTest software and use them to test a
Simulink model. The Test Case Editor provides a graphical way of creating,
editing, and visualizing signal data in SystemTest.

Use this tool to create signals based on commonly used patterns and to specify
values for attributes of those signal segments. You can easily create the
following types of signals:

• Constant

• Step

• Ramp

• Pulse

• Square

• Sine

• Custom

The tool also allows you to view and manage buses and signals, and to
organize them into test cases. You can manage a large number of test cases
and signals.

The Test Case Editor is accessed through the Test Case Data test vector in
the SystemTest software.

Definitions
The following definitions apply to creating and editing signals in the Test
Case Editor.

• Segment — A common signal pattern providing property configurations
specific to its type. This individual portion of a signal is used as a building
block for constructing more complex signals.

See “Add Signals to Test Cases” on page 5-18.

• Signal— An array of time-based data used for testing a Simulink model.
Created from one or more segments.

5-2

Signal Authoring for Test Data

See “Add Signals to Test Cases” on page 5-18 and “Signal Types” on page
5-30.

• Test Case— Created in the Test Case Editor, a collection of one or more
signals that can be treated as a set of inputs to a Simulink model.

See “Create Test Cases” on page 5-13.

• Test Case Data test vector — Type of test vector in the SystemTest
software used to manage a 1xN array of test cases. Also the way to open
the Test Case Editor from the SystemTest software.

See “Create a Test Case Data Test Vector” on page 5-6.

• Edit view— View in the Test Case Editor that shows plots of the selected
signals in a test case. Where you build and edit signals.

See “Edit View” on page 5-9.

• Test Case view — View in the Test Case Editor that shows a graphical
representation of each signal. Allows an easy way to find and manage
signals when you have many signals in a test case.

See “Test Case View” on page 5-11.

• Test Case Options— Accessed by right-clicking a test case, options that
govern the length of test cases and place to add a description.

See “Test Case Options” on page 5-17.

• Signal Properties — Properties, such as extrapolation policy and data
type, set on an entire signal in the Signal Properties area of the Edit
view, and place to name a signal.

See “Add Signals to Test Cases” on page 5-18.

• Segment Properties— Properties set on an individual signal segment in
the Segment Properties area of the Edit view. Place to define duration
and values of the segment.

See “Add Signals to Test Cases” on page 5-18.

5-3

5 Author Signals in the Test Case Editor

Author and Use Signals in Tests
This section describes the high-level workflow of authoring and using signals
in tests.

Note that you would often create a Simulink element first and can create
the test vector from the element, but in this workflow example you start by
creating a new test vector.

1 On the Test Vectors pane of SystemTest software, click the New button.

2 Select Test Case Data as the test vector type. Click OK to create it.

See “Create a Test Case Data Test Vector” on page 5-6 for more information
on this step.

3 On the Test Vectors pane, select the Test Case Data test vector you just
created.

4 Click the Open Test Case Editor button to open the tool.

5 In the Test Case Editor, add one or more test cases using the Add Test
Case button.

See “Create Test Cases” on page 5-13 for more information on this step.

6 Select a test case and add one or more signals to it using the Add Signal
button.

See “Add Signals to Test Cases” on page 5-18 for more information on this
step.

7 For each signal, append the desired segment(s) to create the signal you’d
like to use.

See “Add Signals to Test Cases” on page 5-18 for more information on this
step.

8 For each segment, configure its attributes as needed.

See “Add Signals to Test Cases” on page 5-18 for more information on this
step.

5-4

Author and Use Signals in Tests

9 Once you have created and edited the test cases and signals that you
need, close the Test Case Editor by clicking the x button in the banner or
the OK button at the bottom of the window. When you close the tool, the
SystemTest software saves the data in the Test Case Data test vector.

10 Return to the SystemTest desktop. You can now use Test Case Data test
vector and the signals it contains in your test, via the Simulink element,
the Limit Check element, and the General Plot element.

Note For an example of using signals created in the Test Case Editor in a
Simulink element, see “Test Cases and Signals in Simulink Element” on
page 4-48.

Note You can access the signal data from a Test Case Data test vector by
using a MATLAB element in your test. For an example of this, see “Access
Test Case Data Using MATLAB Element” on page 2-78.

5-5

5 Author Signals in the Test Case Editor

Create a Test Case Data Test Vector
As described in “Author and Use Signals in Tests” on page 5-4, you create
a Test Case Data test vector from the SystemTest software, and then add
signals to it using the Test Case Editor. This example starts from the Test
Vectors pane.

To create the Test Case Data test vector:

1 On the Test Vectors pane of SystemTest software, click the New button.

2 In the Insert New Test Vector dialog box, select Test Case Data as the
test vector type.

3 Assign a name to the vector in the Name field.

4 Click OK in the Insert Test Vector dialog box.

5-6

Create a Test Case Data Test Vector

The new vector appears in the Test Vectors pane.

5 On the Test Vectors pane, select the test vector you just created, and click
the Open Test Case Editor button to create the test cases and signals, as
described in “Author and Use Signals in Tests” on page 5-4.

5-7

5 Author Signals in the Test Case Editor

6 Alternatively, you can click the Open Test Case Editor button after step
3, while creating the test vector. If you do that, click OK in the Insert Test
Vector dialog box once you return to the SystemTest desktop.

Whether you create the test cases and signals during creation of the test
vector, or after you have created it, see “Create Test Cases, Signals, and
Buses” on page 5-9 for information on creating and editing the test cases
and signals.

Note For an example of using signals created in the Test Case Editor in a
Simulink element, see “Test Cases and Signals in Simulink Element” on
page 4-48.

Note You can access the signal data from a Test Case Data test vector by
using a MATLAB element in your test. For an example of this, see “Access
Test Case Data Using MATLAB Element” on page 2-78.

5-8

Create Test Cases, Signals, and Buses

Create Test Cases, Signals, and Buses

In this section...

“Navigate in the Test Case Editor” on page 5-9

“Create Test Cases” on page 5-13

“Add Signals to Test Cases” on page 5-18

“Buses in the Test Case Editor” on page 5-23

“Signal Types” on page 5-30

Navigate in the Test Case Editor
The Test Case Editor has two views you can work in. By default it opens in
the Edit view. You can switch between the two views using the Test Case
View and Edit View buttons on the top right of the tool. In the following
diagram, the Edit View button is selected.

You edit and work with signals in the Edit view. The Test Case view offers
easy navigation when you have many signals in a test case.

Edit View
The Edit view shows plots of the selected signals in a test case. Select a test
case in the Test Case list to see its signals in the Edit view. Only one test
case at a time can be selected.

5-9

5 Author Signals in the Test Case Editor

In the lower-left pane is a signal list that lists every signal in the selected test
case. You can click signals in the signal list to select or clear them. You can
select multiple signals by using the Ctrl key as you click on them.

Only signals that are selected in the signal list are shown in the signal display
area. If all signals are selected, all the signals’ plots will be displayed in the
signal display area. A scroll bar appears if the signal plots take up more
vertical room than is available in the signal display area.

In the signal display area, only one signal at a time can be selected. The
plot of the currently selected signal is outlined in yellow. Properties shown
in the Signal Properties section are the values for the currently selected

5-10

Create Test Cases, Signals, and Buses

signal. For information on setting signal properties, see step 4 in “Add Signals
to Test Cases” on page 5-18.

Properties shown in the Segment Properties section are the values for the
currently selected segment inside the selected signal. The diagram to the
right of the properties shows graphical definitions of the values of the signal
type. For information on setting segment properties, see steps 5 through 8 in
“Add Signals to Test Cases” on page 5-18.

Test Case View
The Test Case view shows an icon for each signal in the selected test case.
The shape of the signal and its name are shown. The signals are displayed
from left to right across each row and then continue in the next row down, in
the order of creation. A scroll bar appears if the icons use more vertical room
than is available in the view area.

5-11

5 Author Signals in the Test Case Editor

In the Test Case view, multiple signals can be selected. The signal icons that
are selected are shown with a dark blue background. Unselected signals have
a white background.

This view allows an easy way to find and manage signals when you have
many signals in a test case. It is easier to locate a signal by looking at the
graphics in this view. It is also easy to add and delete signals in this view.
As in the Edit view, click the Add Signal button to add a signal in the Test
Case view. If you want to edit the signal, you must return to the Edit view, by
double-clicking the signal or by clicking the Edit View button. You can delete
a signal in this view by selecting its icon and pressing the Delete key.

5-12

Create Test Cases, Signals, and Buses

If you have a large number of signals, use the slider at the bottom of the Test
Case view to adjust the size of the graphics, which in turn determines how
many are shown at once. Sliding the bar to the left shrinks the size of the
graphics and displays more of them. Sliding the bar to the right increases the
size of the graphics and shows less of them.

When you click the Edit View button to return to the Edit view, the first
signal that is selected in the Test Case view will be selected in the Edit view
and its plot will be displayed in the edit area.

Create Test Cases
When the Test Case Editor is opened from the Test Case Data test vector in
the SystemTest desktop, it opens in the Edit view and contains one test case
called TestCase1 by default.

There are two workflows you could follow. You can add multiple test cases,
and then go into each test case and add the signals, or you could add one test
case and then add the signals to it, and then add another test case and its
signals if you have multiple test cases. Both of these workflows are described
below.

To add test cases one at a time with their signals:

1 Rename the default test case, by double-clicking TestCase1 in the Test
Cases list.

2 Type a new name for the first test case and press Enter to change the name.

3 With the renamed test case selected, edit it to add signals, as described in
“Add Signals to Test Cases” on page 5-18.

4 Once the first test case is configured, if you need multiple test cases, click
the Add Test Case button to add a second test case.

5 When creating a new test case, you have the option of populating it with
signals from another test case, or with constant values of 0. In this case,
your first test case contains signals with values that you set, so you may
want to use the second option, The same signal values specified in the
following test case, and then select the first test case in the drop-down
list. You can then edit the new test case to vary it from the first. This

5-13

5 Author Signals in the Test Case Editor

option is useful to duplicate values from another test case. If you do not
want to start out with the same signals, select the other option, A constant
value of 0.

Click OK.

6 Add signals to the second test case and/or modify signals that it already
contains.

7 Repeat these steps as necessary to create more test cases.

To add multiple test cases and then signals:

1 Rename the default test case, by double-clicking TestCase1 in the Test
Cases list.

5-14

Create Test Cases, Signals, and Buses

2 Type a new name for the first test case and press Enter to change the name.

3 Click the Add Test Case button to add a second test case.

Note All test cases must have the same number of signals as well as the
same set of names for their signals. For example if TestCase1 has signals
named SignalA and SignalB, when you create a new test case TestCase2,
it will be populated with two signals named SignalA and SignalB. The two
sets of signals may have different parameters and values set though.

4 When creating a new test case, you have the option of populating it with
signals from another test case, or with constant values of 0. In this case the
first test case’s signal has not been modified yet, so keep the default option
A constant value of 0, and click OK.

5-15

5 Author Signals in the Test Case Editor

5 Rename the second test case by double-clicking its default name, typing
a new name, and pressing Enter.

6 Repeat these steps to add as many test cases as you need.

7 When the test cases are present, add signals to each one by selecting it in
the Test Cases list and then editing it as described in “Add Signals to
Test Cases” on page 5-18.

To delete a test case, select it in the Test Cases list and press the Delete key,
or right-click and select Delete from the context menu.

5-16

Create Test Cases, Signals, and Buses

Test Case Options
You can set options for the test case by right-clicking on a test case in the
Test Cases list, and selecting Options from the context menu. This opens
the Test Case Options dialog box.

To determine test case length:

In order to run a test using the test cases you created, all signals within a
test case must be the same length. In case some signals are shorter than
others, use the following options to determine how to define the end time for
all signals in the test case.

• Extend all signals to the longest time means that all the signals will be
extended to the length of the longest signal. For example, if you have four
signals of length 3, 5, 7, and 7, the signals of length 3 and 5 will both be
extended to 7 seconds.

Note that when a signal is extended, it is extended in the way that you
select in the Extrapolation Policy property in the Signal Properties
of a given signal. See step 4 in “Add Signals to Test Cases” on page 5-18
for more information on setting that property.

5-17

5 Author Signals in the Test Case Editor

• If you select End all signals at n seconds, use the arrows to choose the
length that you want all signals to use. Every signal in the test case then
ends at that time in seconds.

Description

You can optionally add a description for the test case here. Enter your text in
the text field and it is saved when you click OK.

Add Signals to Test Cases
You build test cases in the Test Case Editor by adding signals to them. The
test cases are then used in the Test Case Data test vector, through the
Simulink element in the SystemTest software. The tool supports the following
signal types: constant, ramp, step, pulse, square, sine, and custom.

For information on opening the Test Case Editor from the SystemTest
software, see “Author and Use Signals in Tests” on page 5-4. For information
on creating test cases, see “Create Test Cases” on page 5-13.

To create signals:

1 In the Test Case list, select the test case you want to populate.

By default, the first time you open the tool from a new Test Case Data
test vector, one test case is created.

2 The test case that is created by default contains one signal when it is
created. You can modify that signal and use it as your first signal, or
delete it.

3 For additional signals, click the Add Signal button that appears above
the signal list in the lower-left pane.

Select the type of signal to add from the drop-down button. For information
about the parameters and constraints of each signal type, see “Signal
Types” on page 5-30.

5-18

Create Test Cases, Signals, and Buses

If you have only one test case, the new signal is added underneath whatever
signal is currently selected in that test case.

If there are multiple test cases, you are prompted with the Add New Signal
dialog box. Since all test cases need to contain the same signals, the
new signal will also be added to all other test cases. Select the value to
propagate to the other test case(s), then click OK.

5-19

5 Author Signals in the Test Case Editor

4 Set the signal properties for the signal. These are set in the Signal
Properties section underneath the signal plots.

You can edit signal properties for the selected signal, as follows:

Name— New signals are given a default name. Type a new name in the
edit field.

Data Type — New signals are data type double by default. Accept the
default or select a different data type from the list of standard MATLAB
data types.

Changing the data type changes the value of the signal. Note that if you
change the data type, the change will be applied at run time of the test,
but will not be visually reflected in the Test Case Editor – the Editor’s
user interface will display the signal as if it were still data type double in
the signal plot in the Edit view, as well as the plot icon in the Test Case
view. When you run the test, the values that are used will reflect the data
type that is set.

Extrapolation Policy — All the signals in a test case must have the
same length. If this signal is shorter than the longest signal, this option
determines what value is used to lengthen it. Hold last value as a
constant means that the end value of the signal’s last segment will be held
as a constant for the rest of the time. Selecting Bring back to zero and
hold drops the signal to 0 after the last segment ends.

5-20

Create Test Cases, Signals, and Buses

Property edits are committed when you press Enter or click outside of
the edit field.

5 When you add a signal, it will contain one segment and use default values
for that signal type. Set values for the selected segment in the Segment
Properties section. Each type of signal has a different set of properties
to set. For example, a constant has only Segment Duration and Value
properties, and a pulse has properties for Segment Duration, Initial
Value, Offset, Final Value, and Pulse Width.

For information about the parameters and constraints of each signal type,
see “Signal Types” on page 5-30.

As you set values in the Segment Properties section, they are committed
and immediately reflected in the plot of the signal when you click outside of
a field or press Enter.

6 Signals contain one segment by default but you can append multiple
segments to define your signal. You can create a signal by concatenating
together any of the supported signal types as segments. The contiguous
segments make up the entire signal’s value.

To append a segment to the selected signal, click the Append button in the
signal plot. Select a signal type for the new segment from the drop-down
list.

The Append button and the arrow buttons only appear in the plot of the
currently selected signal. A signal can be selected by clicking it when in
the Edit view.

5-21

5 Author Signals in the Test Case Editor

The new segment is appended to the end of the currently selected segment,
and uses default values for that signal type.

7 Edit the Segment Properties for the new segment. Each segment has
its own properties and any edits made will be applied to the currently
selected segment.

See “Signal Concatenation” on page 5-23 for information on the rules that
govern concatenation.

8 While editing a signal with multiple segments:

• The currently selected segment is highlighted with a blue line in the
plot. Click a segment to select it.

• You can use the left and right arrow buttons in the plot to move the
currently selected segment.

• Increasing or decreasing a segment’s length results in shifting the other
segments of the signal as well. (However, it does not change their
lengths.)

• You can delete the currently selected segment by pressing the Delete
key.

• Note that if you set the Extend all signals to the longest time option
in the Test Case Options, when you make the current signal longer by
adding a segment, any other signals in the test case will be extended
to the same length, using the Extrapolation Policy you selected in
the Signal Properties. In the other signal(s), the additional length is
shown as a dotted line in its plot.

9 Repeat these steps to add as many segments to a signal as necessary.

5-22

Create Test Cases, Signals, and Buses

Note For an example of using signals created in the Test Case Editor in a
Simulink element, see “Test Cases and Signals in Simulink Element” on
page 4-48.

Signal Concatenation
You can create a signal by concatenating any of the supported signal types as
segments. The contiguous segments make up the entire signal’s value. The
following rules apply:

• The first segment’s start time is 0.

• Any other segments’ start time is the same as the end time of the previous
segment.

• The length of a segment is its duration.

• The end time of a segment is its start time + duration.

• The length of a signal is the sum of the duration of all of the segments.

When the duration of a segment changes, it has no effect on the duration of
any other segments. The length of the other segments remains the same. The
length of the entire signal changes however, because one of its segments
became shorter or longer.

If a segment is added or deleted from a signal, this has no effect on
neighboring segments’ parameters. Individual segments remain the same
length but the signal length changes as a result.

Buses in the Test Case Editor
The Test Case Editor supports the use of buses in your model and you can use
it to create buses and signals within buses.

The hierarchy of buses and signals appears in the signal list in the lower-left
pane of the Test Case Editor, as shown here in the Edit view.

5-23

5 Author Signals in the Test Case Editor

5-24

Create Test Cases, Signals, and Buses

In this example you can see that In1 is a bus containing two signals, pressure
and temperature. The signal pressure is selected in the signal tree and
consequently is displayed and selected in the editing pane, when in the Edit
view.

Nested bus hierarchies are supported. In the example you can see that bus
In5 contains another bus a1, which contains two buses left and right. The
left and right buses each contain two signals, pressure and temperature.

You can select multiple signals in the signal list by pressing the Ctrl key as
you select signals. The following example shows a test case with three signals
selected. You can see that the three signals are selected in the signal list, two
of them within bus In1 and one root-level individual signal In6. Those three
signals are also shown in the signal editing area. Notice that the signal that is
selected in the editing pane, pressure, is labeled In1.pressure in the signal
diagram, to denote it is a signal within bus In1.

5-25

5 Author Signals in the Test Case Editor

5-26

Create Test Cases, Signals, and Buses

Note If you have a model that contains buses, you can automatically
generate a test harness from the model. It will create and configure all of the
appropriate parts of the test, including elements, test vectors, and mappings,
and create a test case containing all of the Inport blocks as buses and/or
signals. For more information, see “Test Harness Generation” on page 6-2.

You can perform some actions by right-clicking buses and signals in the signal
tree. The context menu includes the following commands:

• Cut

• Copy

• Paste

• Add Signal

• Add Bus

• Rename

• Delete

• Copy Signal Values to the Same Signal in All Test Cases

In the Test Case view, each level of the bus hierarchy is displayed via icons,
as shown here.

5-27

5 Author Signals in the Test Case Editor

The section at the top of the Test Case view shows all of the signals and buses
that are included in the test case, in the order they appear in the signal tree.
After that, each bus is shown as a group with the signals it contains. The
groups appear in the order they appear in the signal tree. Groups for nested
buses are also shown.

Notice in the example that bus In1 is a root-level bus containing two signals
and no nested buses. But bus In5 is a root-level bus that contains three
individual signals, a, a2, and a3, as well as a nested hierarchy of buses a1,
left, and right. Each subgroup is shown in its own section in the Test Case
view.

5-28

Create Test Cases, Signals, and Buses

Notice that one of the signals that is selected, temperature, is in a group that
is labeled In5.a1.left in the signal diagram. This indicates it is a signal
within the bus left, which is within bus a1, which is within bus In5.

To edit a signal from the Test Case view, double-click the signal’s icon in the
icon area or select the signal icon and right-click Edit Signal. The Edit view
appears and that signal will be selected for editing.

Add Buses to a Test Case
You can add a bus to a test case, and then add one or more signals to the bus.

1 In the Edit view, click the Add Bus button that appears above the signal
list in the lower-left pane.

The bus is added below any existing buses or signals in the list, at the
highest level in the hierarchy (the root level). It is called Bus1 by default.
You can double-click the bus in the signal list to rename it.

2 The bus is empty until you add signals to it. With the name of the bus still
selected in the signal list, click the Add Signal button.

Select the type of signal to add from the drop-down button.

3 Add as many signals to the bus as you need, as described in “Add Signals to
Test Cases” on page 5-18.

4 To add another bus, click the Add Bus button again. A second bus, called
Bus2 by default, is added under the first one, at the same level in the
hierarchy if a top-level individual signal was selected. If a bus or a signal
within a bus is selected when you click Add Bus, the new bus is added
under the first bus in a nested hierarchy.

For example, in the following diagram, In10 is selected when Add Bus is
clicked. As a result, Bus1 is added at the end of the bus and signal list.
With In10 still selected, if the button is clicked again, Bus2 is added under
Bus1 at the same root level.

With Bus1 selected, clicking Add Signal results in Signal1 being added
to that bus. With Bus2 selected, Add Signal results in a Signal1 being
added to that bus. Then with Bus1 selected, if you click Add Bus again,

5-29

5 Author Signals in the Test Case Editor

the new bus is added under the signal(s) of the first bus as a nested bus,
as shown here.

Signal Types
Each signal is defined by several parameters. Using these parameters, the
signal generates time-based data. The following rules apply to all the signals:

• All signal parameters are readable, writable scalar doubles, unless
otherwise noted.

• All time-related parameters are defined in seconds.

• All parameters have constraints that must always be true, and are enforced
when the value is set. For example, Duration must always be positive.

The following tables describe the built-in signal types the tool uses.

Constant

5-30

Create Test Cases, Signals, and Buses

Parameter Definition Default
Value

Constraints

Segment
Duration

The length of the signal in seconds. 10 > 0

Value The constant value of the signal the
entire Duration.

1 none

Configuration constraint: none.

5-31

5 Author Signals in the Test Case Editor

Step

Parameter Definition Default
Value

Constraints

Segment
Duration

The length of the signal in seconds. 10 > 0

Initial
Value

The value of the signal before
Offset.

0 none

Final
Value

The value of the signal after Offset. 1 none

Offset The time in seconds when the signal
switches from Initial Value to
Final Value.

5 > 0

Configuration constraint: Duration > Offset.

5-32

Create Test Cases, Signals, and Buses

Ramp

Parameter Definition Default
Value

Constraints

Segment
Duration

The length of the signal in seconds. 10 > 0

Initial
Value

The starting value of the signal. 0 none

Final
Value

The ending value of the signal. 1 none

Offset The time in seconds when the signal
begins to transition from Initial
Value to Final Value.

5 => 0

Slope The rate of change of the signal over
time.

.2 read-only

Configuration constraint: Initial Value ≠ Final Value.

5-33

5 Author Signals in the Test Case Editor

Pulse

Parameter Definition Default
Value

Constraints

Segment
Duration

The length of the signal in seconds. 10 > 0

Initial
Value

The value of the signal before
Offset and after Offset + Pulse
Width.

0 none

Final
Value

The value of the pulse after Offset
and before Offset + Pulse Width.

1 none

Offset The time in seconds when the signal
transitions from Initial Value to
Final Value.

4 > 0

Pulse
Width

The amount of time in seconds
after Offset when the signal has
the value Final Value. The signal
returns to Initial Value afterward
for the rest of the signal.

2 > 0

Configuration constraint: Duration > Offset + Pulse Width.

Configuration constraint: Initial Value ≠ Final Value.

5-34

Create Test Cases, Signals, and Buses

Square

Parameter Definition Default
Value

Constraints

Segment
Duration

The length of the signal in seconds. 10 > 0

Initial
Value

The amount the square wave is
offset vertically.

0 none

Amplitude The value of the signal while in the
high state.

1 > 0

Duty Cycle The percentage of time the square
wave has Amplitude as opposed to
– Amplitude.

.5 0 < dc <1

Phase
Shift

The value in degrees the signal is
horizontally shifted into its period.

0 none

Period
Length

The length in time for a full
repetition of the wave.

5 > 0

Configuration constraint: none.

5-35

5 Author Signals in the Test Case Editor

Sine

Parameter Definition Default
Value

Constraints

Segment
Duration

The length of the signal in seconds. 10 > 0

Initial
Value

The amount the wave is offset
vertically.

0 none

Amplitude The amplitude of the sine wave. 1 > 0

Phase
Shift

The horizontal shift of the period in
degrees.

0 none

Period
Length

The length in seconds of a period. 5 > 0

Sample
Rate

The amount in seconds between
each sampled point.

.1 > 0

Configuration constraint: none.

5-36

Create Test Cases, Signals, and Buses

Custom

Parameter Definition Default
Value

Constraints

Time User-defined time vector. [0 2 4 6 8
10]

1xN
increasing
double

Data User-defined value vector. [2 0 3 2 3
1]

1xN
double

Configuration constraint: Time and Values must have the same length and
dimension.

When specified, Time or Values may be 1xN or Nx1. If specified as Nx1, it will
automatically be converted to a 1xN.

5-37

5 Author Signals in the Test Case Editor

Link to Requirements in Telelogic DOORS

In this section...

“Introduction and Setup” on page 5-38

“Add Requirements” on page 5-38

“Requirements Tab” on page 5-41

“Test Case Report” on page 5-44

“Create Requirements Programmatically” on page 5-46

Introduction and Setup
You can link test cases that you created in the Test Case Editor to
requirements that are in Telelogic® DOORS®. This is done through the
Requirements tab in the Test Case Editor. The integration allows you to
easily link any DOORS requirements to any test cases by selecting them
using their object headings.

Note You need a license for Simulink Verification and Validation to use
this feature.

Note Before using this feature, you must run a setup program one time on
the machine you will be using. In a command window, type

rmi setup

and press Enter. This function is part of Simulink Verification and
Validation setup and enables the use of the Telelogic DOORS integration to
link requirements to a test case in SystemTest. For more information, see the
rmi function in the Simulink Verification and Validation documentation.

Add Requirements
Requirements are linked to the currently selected test case in the Test Case
Editor.

5-38

Link to Requirements in Telelogic® DOORS®

To add requirements to a test case:

1 Select a test case from the Test Cases list in the Test Case Editor.

2 Click the Requirements tab.

3 Click the Add link to new DOORS module button.

The DOORS module selection dialog box opens. Note that DOORS must be
open for this integration to work. If DOORS is not open, an error occurs.

4 In the Browse DOORS dialog box, browse to the module you want to link to.

5-39

5 Author Signals in the Test Case Editor

5 Click OK to add the module.

The requirement appears in the table in the main area of the
Requirements tab.

6 Select the object heading you want to link to.

5-40

Link to Requirements in Telelogic® DOORS®

After you add a requirement, the Add button becomes Add link to last
DOORS module and the Browse DOORS dialog opens to the module from
which you have already selected.

Requirements Tab
The table displays requirements and contains the following columns:

• Location — Displays the module location.

• Description— Displays the DOORS title number and heading.

5-41

5 Author Signals in the Test Case Editor

In the details section under the table, details of the selected requirement are
displayed, as follows:

• Document Type— Indicates the source document of the requirements, in
this case, Telelogic DOORS.

• Module Location— Shows location of the DOORS document.

• Object Heading — Displays the list of available objects in the module
location. It shows the DOORS object ID number, title number, and heading.
Selecting an object updates the description in the Object Text area.

5-42

Link to Requirements in Telelogic® DOORS®

• Object Text— Displays DOORS object text of the currently selected object
heading. It is empty if DOORS is not open or available.

Note in the previous illustration that object 2: “1.1 Purpose of the
Document” is selected, and its Object Text is displayed, “This document
provides.....”.

• View in DOORS button — Navigates to the object in DOORS. If DOORS
is not open or available, it produces an error.

In the example shown above, where the requirement 2 (number 1.1,
Purpose of the Document) was selected, when the View in DOORS button
is clicked, the following graphic shows how it opens in DOORS with that
requirement selected.

5-43

5 Author Signals in the Test Case Editor

Test Case Report
The Test Case Editor has a separate report that links from the SystemTest
Test Report. If you link requirements to a test case, additional sections are
added to the Test Case report.

The Requirements section is created if at least one requirement is attached
to a Test Case Data test vector. If you have a Simulink Verification and
Validation license, the Object Text will be available in addition to the other
information.

A Test Case Editor report is generated when a SystemTest Test Report is
generated and you run a test that uses a Test Case Data test vector. To enable
the Test Report, in the SystemTest desktop, click the test name in the Test
Browser, and then click the Output Files tab on the Properties pane. In
the Select File Names section, select the Generate report option.

If the report is enabled and you run a test containing a Test Case Data test
vector with requirements, you can open the report at the end of the run by
clicking the Test Report link in Run Status pane of the SystemTest desktop.

5-44

Link to Requirements in Telelogic® DOORS®

Using the example from the previous section, the following window shows the
report that is created.

5-45

5 Author Signals in the Test Case Editor

At the top of the report you can see the link to the Test Case report. When
you click that link, the Test Case Report opens.

Notice the link to the requirement in that report. If you click that link, the
details about that requirement appear.

Create Requirements Programmatically
In addition to creating requirements in the Test Case Editor as described in
the previous sections, you can create requirement links programmatically for
sue with Telelogic DOORS.

5-46

Link to Requirements in Telelogic® DOORS®

To create a requirement link, use the systest.requirements.createlink
function, as follows. Note that DOORS must be running.

Create a requirement link object to a DOORS object "1" in the module
"/example/MyModule".

reqLinkObj = systest.requirements.createLink('DOORS', '/example/MyModule' ,'DOORS Object','1')

Create a requirement link object from a requirement link structure attached
to a Signal Builder block in a model.

blockPath = 'mymodel/SignalBuilderBlock/';
reqStruct = rmi('get',blockPath,1);
reqLinkObj = systest.requirements.createLink(reqStruct);

For more information, see the reference page for
systest.requirements.createlink.

You can determine the supported requirements information using the
getInfo function.

info = systest.requirements.getInfo(format,modulelocation) returns
information describing the supported link values in the modulelocation for
a given format. format and modulelocation must be specified as a string.
format is not case sensitive but modulelocation is case sensitive. info is
returned as a 1x1 structure containing the following fields:

• ModuleID – A string containing the module ID.

• ModuleLocation – A string containing the module location.

• AvailableObjectIds – A 1xN cell array of strings containing the object
IDs for the specified ModuleLocation.

• ObjectID – The ID string for the DOORS object.

• ObjectHeading – The heading string of the DOORS object.

To get the module location of the DOORS object:

doorsObject.ModuleLocation

5-47

5 Author Signals in the Test Case Editor

You can use the function getObjectText() to get the Object Text of a DOORS
object when DOORS is open:

txt = getObjectText(doorsObject);

You can use the getStatus() function to determine the requirement link’s
status.

[validflag msg] = getStatus(obj) gets the status of a DOORS
Requirement link object obj. validflag is true if you are also able to navigate
to the DOORS object. If validflag is false, the function returns a message
msg describing why the link is invalid.

You can view the requirement link in DOORS using the view() function. To
open the link in the module:

view(obj)

This function opens the module in DOORS if the link is valid. It throws an
error if DOORS is not available or open. It also errors if Simulink Verification
and Validation is not installed. It errors if getStatus(obj) is false.

Examples
A design engineer at an automobile company uses DOORS to capture her
requirements. The requirements are in a module inside a project. The
engineer has created a test case for three of the requirement objects in the
module. She wants to link these requirements to the test case.

objectIDList = {'001234','001235','001236'};

module = '/ProjectCar/EngineModel';

doorsReqObjs = systest.requirements.createLink('DOORS',module,'DOORS Object',objectIDList);

testCases.Properties.Requirements = doorReqObjs;

While working in the test case, the engineer wants to look at the requirements
to make sure the test case has the correct values.

view(testCase.Properties.Requirements(3))

5-48

Test Cases and Signals in SystemTest™ Elements

Test Cases and Signals in SystemTest Elements

In this section...

“Introduction” on page 5-49

“Simulink Element” on page 5-49

“MATLAB Element” on page 5-50

“General Plot Element” on page 5-50

Introduction
You can use the test cases and signals you create in the Test Case Editor
within your test by using some of the test elements within the SystemTest
software.

You can select a Test Case Data test vector or individual signals from the test
vector within the following elements:

• Simulink element

• MATLAB element

• General Plot element

The following sections discuss using test cases and signals in these elements.

Simulink Element
You can create signals in the Test Case Editor and use them to test a Simulink
model. You do this by mapping the signals in the Simulink element using a
Test Case Data test vector.

One possible high-level workflow of using test cases and signals in your test
via the Simulink element is:

• Create a Test Case Data test vector.

• Open the Test Case Editor from the test vector.

• Create a test case and signals in the Test Case Editor.

5-49

5 Author Signals in the Test Case Editor

• Return to the SystemTest desktop and create a Simulink element.

• In the Simulink element, map Inport blocks in your model to the signals
you created in the Test Case Editor by selecting the Test Case Data test
vector or individual signals in the Simulink element.

Note For an example of using signals created in the Test Case Editor in a
Simulink element, see “Test Cases and Signals in Simulink Element” on page
4-48. It includes the workflow outlined here and gives details on the steps in
the Simulink element.

MATLAB Element
You can access the data from a Test Case Data test vector by using a MATLAB
element in a test that has a Test Case Data test vector. You could use the
data for a variety of reasons, such as writing it to a CSV file, calling a custom
function, or creating a plot.

To see example code you could use in a MATLAB element, see “Access Test
Case Data Using MATLAB Element” on page 2-78.

General Plot Element
You can plot data from a Test Case Data test vector or any individual signals
from a Test Case Data test vector in a General Plot element. Test Case Data
test vectors and signals are supported in two plot types – plot and Simulink
data. Any other plot type results in an error at run time.

Note You can only plot an individual signal in the General Plot element. If
your test case contains a bus, you cannot select the bus in the plot. You can
select an individual signal within the bus.

The following sections describe the behavior of using a Test Case Data test
vector or an individual signal for these two plot types.

5-50

Test Cases and Signals in SystemTest™ Elements

plot Plot Type

• Test Vector — If you use a Test Case Data test vector as the Y Data
Source and X Data Source is left as <Auto>, then all signals within
the test vector are plotted on the same axes versus their times. In the
example shown here, the test vector TestVector1 is selected, so all four of
its signals will be plotted.

5-51

5 Author Signals in the Test Case Editor

If your test vector includes signals that are scaled very differently, see the
note about scaling at the end of this section.

• Individual Signal — If you specify an individual signal as the Y Data
Source and X Data Source is left as <Auto>, then that signal is plotted
versus its time. In the example shown here, the signal engine_speed is
selected, so that signal will be plotted.

5-52

Test Cases and Signals in SystemTest™ Elements

Simulink data Plot Type

• Test Vector — If you select a Test Case Data test vector in the Simulink
Data field, then all signals within the test vector are plotted on the same
axes versus their times. In the example shown here, the test vector
TestVector1 is selected, so all four of its signals will be plotted.

If your test vector includes signals that are scaled very differently, see the
note about scaling at the end of this section.

5-53

5 Author Signals in the Test Case Editor

• Individual Signal — If you specify an individual signal in the Simulink
Data field, then that signal is plotted versus its time. In the example
shown here, the signal engine_speed is selected, so only that signal will be
plotted.

5-54

Test Cases and Signals in SystemTest™ Elements

Note If you plot a Test Case Data text vector, either using plot or Simulink
data plot type, and the signals within the test vector are scaled very
differently, you may prefer to plot the signals on different axes.

If you want each signal to appear with its own scale, add an axes for
each signal and then add the plot to each axes. For example, if you have
TestVector1 and it has three signals, Signal1, Signal2, and Signal3, you
could plot it as shown here.

5-55

5 Author Signals in the Test Case Editor

Programmatic Test Case and Signal Authoring

In this section...

“Overview” on page 5-56

“Load and Save Test Cases” on page 5-57

“Edit Test Cases” on page 5-58

“Create Signals” on page 5-59

“Import from External Source to Test Case” on page 5-60

Overview
The functionality of the Test Case Editor, as described in this chapter, is also
available via a command-line interface. The functions allow you to do the
following tasks programmatically:

• create test cases, signals, and segments

• add test cases, signals, and segments to a SystemTest test

• configure and edit test cases, signals, and segments in a test

• extract test cases, signals, and segments from a test

For information on usage and syntax of the functions, see these reference
pages.

The objects:

• systest.TestCase

• systest.signals.Signal

• systest.signals.segments

The saving and loading functions:

• stLoadTestCases

• stSaveTestCases

5-56

Programmatic Test Case and Signal Authoring

The signal manipulation functions:

• isSignal

• setSignal

• getSignal

• removeSignal

• renameSignal

• setDataType

• horzcat

• getInfo

Load and Save Test Cases
If you have a test with test cases you can load and save them programmatically.
The test cases can be created using the Test Case Editor, as described in this
chapter, or they can be created with the automatic test harness generation
feature. A test can be generated automatically from Simulink (see “Generate
a Test Harness from Simulink” on page 6-4), or via the command line (see
“Generate Test Harness at the Command Line” on page 6-13).

In this example workflow, we will generate a test automatically, then load the
test cases, modify them, then save the test cases.

1 Create a SystemTest test called myTest.test from the command line based
on the model myModel.

systest.createHarness('myModel', 'C:\Work\myTest.test');

The test is created and put into your C:\Work folder.

2 As part of the test generation, one or more test cases are created with
signal names corresponding to the Inport blocks in your model. You can
now access the test case(s) programmatically.

Load the test cases contained in the test myTest.test.

testCases = stLoadTestCases ('myTest.test');

5-57

5 Author Signals in the Test Case Editor

3 You can now modify the test cases, using the functions listed in “Overview”
on page 5-56. For example, you could add and/or modify signals contained
in the test case(s).

4 After you have finished working with the test case(s), you can save them
back to the test.

stSaveTestCases('myTest.test', testCases);

5 Load the test in the SystemTest desktop.

systemtest('myTest.test')

Edit Test Cases
You can add test cases, signals, and segments to a test and configure and edit
existing test cases, signals, and segments in a test.

signal = systest.signals.Signal(segment_type) creates a signal with a
segment of type segment_type.

For a list of supported segment types and their properties, see the reference
page for the systest.signals.segments function.

The following is an example workflow of editing existing test cases. In this
case we load the test case, add a signal to it, then save the test case.

1 Load the test cases contained in the test myTest.test.

testCases = stLoadTestCases ('myTest.test');

2 Create a ramp segment with an Offset of 2 and a FinalValue of 6.

segment = systest.signals.segments.Ramp('Offset', 2, 'FinalValue', 6)

3 Update the first test case’s signal MySignal to use the new segment.

testCases(1).MySignal.Segments = segment;

4 After you have worked with the test case(s), you can save them back to
the test.

stSaveTestCases('myTest.test', testCases);

5-58

Programmatic Test Case and Signal Authoring

Create Signals
You can create signals with default properties or create them and specify
properties. You can create the following signal/segment types:

• Constant – A segment with a constant value.

• Custom – A segment with user-specified time and data vectors.

Properties include:

• Pulse – A segment with a pulse value.

• Ramp – A segment with a linearly changing value.

• Sine – A periodic sine wave.

• Square – A periodic series of pulses.

• Step – A segment that transitions from a one value to another.

For a list of the properties for each segment type, see the reference page for
the systest.signals.segments package.

If you add a segment and do not specify any properties, it is created with
default properties. Default properties of the signals are defined in “Signal
Types” on page 5-30. To add properties, follow the syntax shown in the
examples below.

Creating Signals with Default Values

Create a signal with one segment using default values, in this case a
constant.

systest.signals.Signal('Constant')

Create a Signal with two segments using default values, in this case a
constant segment followed by a step.

systest.signals.Signal('Constant', 'Step')

Creating Signals with Properties

Create a segment with one property, in this case a Constant segment with a
Value of 5 .

5-59

5 Author Signals in the Test Case Editor

segment = systest.signals.segments.Constant('Value', 5)

Create a segment with multiple properties, in this case a ramp segment with
an Offset of 2 and a FinalValue of 10.

segment = systest.signals.segments.Ramp('Offset', 2, 'FinalValue', 10)

Appending Segments to Signals

If you create segments, you need to append them to signals. The following is
an example of creating a signal, creating segments, then adding the segments
to the signal.

Create a signal with one segment.

signal = systest.signals.Signal('Step');

Create two stand-alone segments.

ramp = systest.signals.segments.Ramp();
pulse = systest.signals.segments.Pulse();

Add the two segments to the end of the signal’s Segments property, which is
an array of segment objects.

signal.Segments = [signal.Segments ramp pulse]

Import from External Source to Test Case
You can use the programmatic interface to import test cases from external
sources, such as an Excel file, a Simulink Signal Builder harness, or a
Simulink Design Verifier data file.

The following is an example of the basic high-level workflow of importing
data from an external source. To see the details of this example, see the
example “Importing Test Cases from Excel into a Test Harness” by opening
the SystemTest Help, then Examples > Programmatic Interface > Importing
Test Cases from Excel into a Harness.

1 Start with a model. In the case of this example, the model contains an
Inport block with a bus that contains four signals.

5-60

Programmatic Test Case and Signal Authoring

2 The example imports a test case from a single worksheet in an Excel file
using the function xlsread. It also assigns the data in the columns to
signals in the test case.

3 Create a test case using the systest.TestCase function.

4 Create signals from the data in the spreadsheet columns using the
systest.signals.Signal function.

5 Create a SystemTest test file using the systest.createHarness function.

6 Then append the test case to the newly created test using the
stLoadTestCases and stSaveTestCases functions.

To see the specific commands for these steps, see the above referenced
example in the SystemTest Help.

5-61

5 Author Signals in the Test Case Editor

5-62

6

Generate a Test Harness
from a Model

• “Test Harness Generation” on page 6-2

• “Model Requirements for Test Harness Generation” on page 6-3

• “Generate a Test Harness from Simulink” on page 6-4

• “Generate Test Harness at the Command Line” on page 6-13

6 Generate a Test Harness from a Model

Test Harness Generation
You can automatically generate a SystemTest test harness from a model in
Simulink. It will create and configure all of the appropriate parts of the test,
including elements, test vectors, and mappings.

The following steps are automatically performed from your model:

• Creates a SystemTest test.

• Creates a Simulink element.

• Creates a Test Case Data test vector.

• Automatically maps each Inport block to the corresponding signal of the
test vector in the Simulink element.

• Creates signals with names that match the root-level Inport block names.

• Sets up the data type of each signal based on the Inport blocks’ data type.

• If the signal has buses, sets up the signals’ data type for the Inport block
using buses as data, and matches the hierarchy of the bus in the test case.

• Automatically sets up the model name and location in the Simulink
element for top-level models with root-level inports and outports.

6-2

Model Requirements for Test Harness Generation

Model Requirements for Test Harness Generation
The automatic test generation requires that the model contain root-level
Inports. If it does not, you will get an error message and a test harness will
not be created. The following conditions apply to the Inports:

• Model must contain root-level Inports.

• The model’s root-level Inports must have scalar dimensions. If any contain
non-scalar dimensions, you will get an error.

• The model’s root-level Inports must use a supported datatype. If any use an
unsupported datatype, you will get an error. Supported datatypes include
double, single, int8, uint8, int16, uint16, int32, uint32, and logical.

The test file name and folder location must be writable in order for the test
to be created (step 2 in the next section). If it is not, you will get an error.
Choose another name or location that is writable.

The model must be able to be compiled. If it fails to compile (using the
Update Diagram button in Simulink), you will get an error.

6-3

6 Generate a Test Harness from a Model

Generate a Test Harness from Simulink
This example uses the following simple model, which contains two Inports,
one of which is a bus.

To create a SystemTest test harness:

1 From the model in Simulink, select Tools > SystemTest > Create Test
Harness.

6-4

Generate a Test Harness from Simulink

The Create Test Harness dialog box opens.

2 The test that is created is named the same as the originating model
with “_harness” appended by default. Notice in this example that the
model name is mInports_Buses.slx and the default name of the test is
mInports_Buses_harness.test. Accept the default test name or type a new
name in the text field.

By default, the location is the current folder in MATLAB. Accept the
location or use the Browse button to select a different folder.

3 Click the Create Test Harness button.

6-5

6 Generate a Test Harness from a Model

The test and its components are created and they are checked off in the
Create Test Harness dialog box as confirmation.

4 Click the Launch Harness button to open the new test.

The SystemTest software opens and you can see the Simulink element and
the test vector that were automatically created in the Test Browser.

6-6

Generate a Test Harness from Simulink

Note that text is added to the Test Description on the General tab
indicating that this test was auto-generated from your model.

Other test properties are set to their defaults – Select Output Folder
is set to Same folder as TEST-file, the results file is named “<model
name>_harness_results.mat”, the Generate report option is selected, and
the Output Folder Numbering option is set to Always use the same

6-7

6 Generate a Test Harness from a Model

folder (overwrite files). You can see these options on the Output Files
tab of the Properties pane.

5 Select the Simulink element in the Test Browser. By default it is named
“Simulate <model name>”.

If you want to change the name of the element, double-click it in the Test
Browser and type a new name.

The generated test automatically maps Inport blocks from the model to
signals in the test vector that is created, and uses the Individual Inports
blocks are mapped option. Notice in the example model shown in the
beginning of this section that there are two Inport blocks, In1 and In2.
Those two Inports are mapped in the Simulink element, as shown here.

6-8

Generate a Test Harness from Simulink

TestCases (In1) is the signal called In1 in the Test Case Data test vector
called TestCases. In1 is a regular signal and In2 is a bus signal. You can
see that it is a bus if you expand the signal in the SystemTest Data list.

6-9

6 Generate a Test Harness from a Model

The Simulink element is configured to map the signal time to the test
vector signal’s time and to use the model stop time.

6-10

Generate a Test Harness from Simulink

6 Select the test vector in the Test Browser. The test vector is called
TestCases by default. If you want to change the name, type a new name in
the Name field on the General tab.

7 Click the Open Test Case Editor button on the Test Vectors pane to
see the test case and signals that were created from the model. By default,
the test case is called TestCase1 and the signals are named the same as
the Inport blocks in the model, as shown here. You can rename the test
case by double-clicking it in the Test Cases list.

The example model has two Inport blocks, which appear in the signal list in
the Test Case Editor. In1 is selected here and you can see that the signal

6-11

6 Generate a Test Harness from a Model

was created using the same Data Type for that signal as the Inport block
had in the model, double in this case.

You can see in the signal list that the Inport block In2 is a bus and its two
signals are shown in the signal tree.

Signals that are created are of Type Constant, have a default Value of
0, and a default Duration of 10 seconds. You can change any of these
parameters by editing them in the Signal Properties or Segment
Properties.

When you are done working in the Test Case Editor, click the OK button.
Any additions or changes you made will be saved to the test vector.

8 Once you have created the test from your model as described here, you can
make additions or modifications to any part of it. You can add test cases or
signals in the Test Case Editor. You can add other elements to the test,
such as the General Plot element to plot your data.

9 Run the test.

6-12

Generate Test Harness at the Command Line

Generate Test Harness at the Command Line
You can also create a SystemTest test based on a Simulink model by using the
command line. A test harness is created as described in the previous section,
but via the command line instead of from Simulink.

The resulting test that is automatically generated is configured for you and
the appropriate components of the test are created, including the Simulink
element and a Test Case Data test vector. For detailed information about the
resulting test, see “Generate a Test Harness from Simulink” on page 6-4.

The automatic test generation requires that the model contain root-level
Inports. If it does not, you will get an error message and a test harness will
not be created. There are also other conditions that apply to the root-level
Inports and the model. For a list of conditions to use this feature, see “Model
Requirements for Test Harness Generation” on page 6-3.

You use the systest.createHarness function to create the test.
systest.createHarness(testFileName,modelName) creates a SystemTest
test harness named <testFileName> for the model <modelName>. The test is
set up with a Test Case Data test vector and a Simulink element using the
information from the Simulink model. The model must be on the MATLAB
path. The testFileName must be a writable file location.

The following example creates a test harness from a model:

>>modelName = 'C:\mymodel.slx';
>>testFileName = 'C:\my_new_harness.test';

>>systest.createHarness(testFileName,modelName)

6-13

6 Generate a Test Harness from a Model

6-14

7

Use the Instrument Control
Toolbox Elements

The Instrument Control Toolbox software provides several elements to use
in the SystemTest software.

• “Instrument Control Toolbox Elements” on page 7-2

• “Measure Generator’s Frequency Using Instrument Control Toolbox” on
page 7-4

7 Use the Instrument Control Toolbox™ Elements

Instrument Control Toolbox Elements

In this section...

“Overview” on page 7-2

“Access Resources” on page 7-2

Overview
The Instrument Control Toolbox elements provide a way to bring data from
instruments into a SystemTest test, or to transmit data from your instrument.
You can use these elements along with the other elements in the SystemTest
software to create tests for Simulink models and other applications.

Note To use the Instrument Control Toolbox elements, you need a license
for the Instrument Control Toolbox software. These three elements will not
appear in the SystemTest software without this license.

The Instrument Control Toolbox software provides three of elements that you
can use in the SystemTest software:

• To Instrument — For sending commands or data to your instrument

• From Instrument — For reading data from your instrument

• Query Instrument — For querying your instrument status or properties

You can configure these elements to communicate with your instruments by
using SystemTest resources supported by the Instrument Control Toolbox
software.

Access Resources
If your MATLAB installation includes elements that require resources, the
SystemTest desktop includes a Resources pane that lets you access the
resources available through these toolboxes. For example, if your MATLAB
installation includes the Instrument Control Toolbox software, you can
see the Resources pane, if you open it from the Desktop menu. Select

7-2

Instrument Control Toolbox Elements

Desktop > Resources to open the pane. It will tab with the Test Vectors
and Test Variables on the lower-left corner of the desktop. Resources are
toolbox-specific. For example, an Instrument resource might be configured to
connect to a device over your computer’s serial port.

7-3

7 Use the Instrument Control Toolbox™ Elements

Measure Generator’s Frequency Using Instrument Control
Toolbox

In this section...

“Introduction” on page 7-4

“Setting Up the Signal Generator” on page 7-5

“Setting Up the Oscilloscope” on page 7-9

“Taking the Measurement” on page 7-11

“Saving Test Results” on page 7-12

“Running the Test and Viewing Test Results” on page 7-13

Introduction
To illustrate how to use some of the Instrument Control Toolbox elements in
the SystemTest software, this section provides a step-by-step example.

In this example a SystemTest element configures a signal generator to
produce signals of various frequencies, which are measured by an oscilloscope
configured by other SystemTest elements.

The signal generator is a Hewlett-Packard 33120A at GPIB address 5, and
the oscilloscope is a Tektronix TDS 210 at GPIB address 4. For this example,
the generator output is fed directly to the scope input. The generator will
be programmed to generate signals of 1500, 5000, and 7500 Hz, while the
oscilloscope will measure each signal’s frequency.

The following sections explain the steps in this example.

7-4

Measure Generator’s Frequency Using Instrument Control Toolbox

Setting Up the Signal Generator
The first element in the test programs the generator to output signals of
various frequencies. To test at three frequencies, the test be comprised of
three test cases, i.e., three iterations. This is a one-way communication to the
generator, so you use a To Instrument element.

1 Open the SystemTest software from MATLAB by typing systemtest at
the MATLAB command line.

2 No setup is required in the Pre Test, so the elements of this test are all in
the main test, so click Main Test in the Test Browser.

3 Add an element by clicking New Test Element > Instrument Control >
To Instrument.

The element appears in the browser as To Instrument.

4 Double-click To Instrument, rename it Set Generator, and press Enter.

7-5

7 Use the Instrument Control Toolbox™ Elements

5 From the Properties pane’s Select an instrument resource list,
select New Instrument Resource. The instrument resource is the
communication channel between MATLAB and your instrument, in this
case the generator at GPIB address 5.

6 In the Edit: Instrument1 dialog box, enter Generator in the Name field.

7 Click Create to create an instrument resource.

8 In the New Object Creation dialog box, select GPIB in the Instrument
object type list. Select the appropriate Vendor (in this example, ni
for National Instruments), Board index (0), and instrument Primary
address (in this example, 5).

9 Click OK to return to the Edit: Instrument1 dialog box, where the
instrument object is now filled in and selected for this resource (GPIB0-5).

7-6

Measure Generator’s Frequency Using Instrument Control Toolbox

10 Click OK to apply this resource and return to the Properties pane in the
SystemTest desktop.

11 In the Command text field, enter frequency followed by a space to
separate the text from the variable that will follow. This is the command to
set the frequency of the 33120A generator, as described in the instrument’s
reference manual proved by the vendor.

12 Click Data source and select New Test Vector. The name of the vector
you create for setting the generated frequencies is called genfreq. In the
Insert Test Vector dialog box, enter that text in the Name field, and set the
Expression field to [1500 5000 7500], including the brackets.

7-7

7 Use the Instrument Control Toolbox™ Elements

13 Click OK to return to the SystemTest desktop.

Notice that the Main Test node in the tree now says (3 Iterations).
Because you entered three values in the test vector, the test is comprised of
three iterations, one for each frequency value in the test vector.

14 Keep the Send variable data as setting as String. The generator is
expecting string values for its commands.

15 Set a pause value of 2 seconds. This allows the generator to settle before
you measure its output.

The element should now resemble the following figure:

7-8

Measure Generator’s Frequency Using Instrument Control Toolbox

Setting Up the Oscilloscope
You use a To Instrument element, which provides a one-way communication
to the oscilloscope, to program the scope to measure frequency.

1 Add an element by clicking New Test Element > Instrument Control >
To Instrument.

7-9

7 Use the Instrument Control Toolbox™ Elements

2 Double-click To Instrument in the tree, rename it Set Scope, and press
Enter.

3 As before, create a new instrument resource, but this time call it Scope.
Create a new instrument object for it using Board index 0, and GPIB
primary address 4.

4 For the command text, enter measurement:immed:type frequency. This
puts the scope in the frequency measurement mode, as described in the
instrument’s reference manual provided by the vendor.

There is no test variable or pause required for this element, so the element
looks like the following figure:

To see the resources you created for communications with your two
instruments, click the Resources tab at the bottom of the SystemTest

7-10

Measure Generator’s Frequency Using Instrument Control Toolbox

window. You can see the Generator and Scope resources, along with
their GPIB settings.

Taking the Measurement
With the generator and scope set up, you can take the measurement with the
scope using a Query Instrument element, which sends the command to the
scope for taking the measurement.

1 Add an element by clicking New Test Element > Instrument
Control > Query Instrument.

2 Double-click Query Instrument in the tree, rename it Measure with
Scope, and press Enter.

3 Use the existing instrument resource called Scope, by selecting it in the
Instrument resource list.

4 Enter the command to query for a measurement by typing
measurement:immed:value? in the Instrument query command field.

5 Select Store complete response, and select the Empty input buffer
after read check box.

6 From the Interpret data as list, select String (this scope returns ASCII
strings), and select the Convert string value to a numeric result check
box.

7-11

7 Use the Instrument Control Toolbox™ Elements

7 From the Assign data to list, select New Test Variable. For the
oscilloscope’s frequency measurement, name the test variable scopefreq.
It needs no initial value.

The element now looks like the following figure:

Saving Test Results
To view the results of your test, you must first specify the test variables you
want to save as test results. This is done in the Save Results Properties
pane.

1 Click Save Results in the test browser tree.

7-12

Measure Generator’s Frequency Using Instrument Control Toolbox

2 In the Properties pane, click New Mapping.

3 From the Test Variable list, select scopefreq. This test variable contains
the frequency measurements provided by the oscilloscope during each Main
Test iteration, as shown in the following figure:

Running the Test and Viewing Test Results
Now that the test elements are all created, you can run the test.

1 Run your test.

2 When the test is complete, click on the link in the Run Status pane to
display your test results.

3 To see the measurement results, at the MATLAB prompt type

format short g
scopefreq
scopefreq =

1501.5
5000
7500

7-13

7 Use the Instrument Control Toolbox™ Elements

This verifies that the signal generator is producing the expected signal
frequencies.

7-14

8

Use Data Acquisition
Toolbox Elements

The Data Acquisition Toolbox software provides several elements to use in the
SystemTest software.

• “Data Acquisition Toolbox Test Elements” on page 8-2

• “Test Voltage Regulator Using Data Acquisition Toolbox” on page 8-3

8 Use Data Acquisition Toolbox™ Elements

Data Acquisition Toolbox Test Elements
The Data Acquisition Toolbox elements provide a way to bring analog and
digital data from a data acquisition device into a SystemTest test, or to
send analog or digital data from your device. You can use these elements
along with the other elements in the SystemTest software to create tests for
Simulink models and other applications.

Note To use the Data Acquisition Toolbox elements, you need a license for
the Data Acquisition Toolbox software. These four elements will not appear
in the SystemTest software without this license.

The Data Acquisition Toolbox software provides four elements that you can
use in the SystemTest software:

• Analog Input — For reading analog data from your data acquisition device

• Analog Output — For sending analog data to your data acquisition device

• Digital Input — For reading digital data from your data acquisition device

• Digital Output — For sending digital data to your data acquisition device

You can configure each test element to communicate with your data
acquisition devices for sending or receiving digital or analog data.

8-2

Test Voltage Regulator Using Data Acquisition Toolbox

Test Voltage Regulator Using Data Acquisition Toolbox

In this section...

“Introduction” on page 8-3

“Sending Analog Stimulus Data to the DUT” on page 8-4

“Enabling the DUT with Digital Data” on page 8-7

“Receiving Analog Response Data from the DUT” on page 8-9

“Disabling the DUT with Digital Data” on page 8-10

“Performing Data Analysis” on page 8-12

“Defining Post Test Elements” on page 8-13

“Saving and Viewing Test Results” on page 8-14

Introduction
To illustrate how to use some of the Data Acquisition Toolbox test elements in
the SystemTest software, this section provides a step-by-step example. The
example shows how to use the elements that send data to a device under test
(DUT) and receive data from a device under test, using both analog channels
and digital lines.

This example samples the response of a 5-V voltage regulator that is
stimulated with three different voltages of 4, 5, and 7.5 volts. The regulator
has an enable function controlled by a digital signal. In this example, you
collect 22,000 samples per second of the DUT response for 2 seconds.

All data going to and from the DUT is handled by a National Instruments®

PCI-6035E data acquisition card. The example uses this card’s analog output
for the DUT stimulus, analog input for capturing the DUT response, and
digital output for controlling the DUT’s enable line. The test configuration is
shown in the following figure:

8-3

8 Use Data Acquisition Toolbox™ Elements

�������� 	
����

����

��������������
��
���������

������������
� ��!���

����������
� ��!���

"�������������
������#�$�
��

"%&

The following sections contain the steps in this example.

Sending Analog Stimulus Data to the DUT
Stimulus data is sent to the DUT from an analog output channel of your
data acquisition card.

1 Open the SystemTest software in MATLAB by typing systemtest at the
MATLAB command line.

2 This example does not use the Pre Test section, so select the Main Test
section in the Test Browser pane.

3 Add an Analog Output element by selecting New Test Element > Data
Acquisition > Analog Output.

8-4

Test Voltage Regulator Using Data Acquisition Toolbox

The new element appears in the browser tree, and its properties appear
in the Properties pane. The SystemTest software scans your computer
for installed data acquisition adaptors and devices. This can take several
seconds.

4 Double-click the new Analog Output node in the browser tree, and enter a
new name for this element, such as Stimulate DUT.

5 Since we have three test cases, we need to create a test vector containing
the three voltage settings to test against. Click the Test Vectors tab. The
voltage values for the stimulus to the DUT are held in a test vector. Click
New Vector to create a new test vector.

6 In the Insert Test Vector dialog box, click the name TestVector1 and enter
a new name for your vector, such as DUTstimulus.

7 Click the default 1 : 1 : 10 entry in the Expression field, and replace
it with the values for your test: [4, 5, 7.5] (be sure to include the
brackets) and click OK. Notice that because there are three values in your
vector, the browser tree now indicates that the Main Test will run three

8-5

8 Use Data Acquisition Toolbox™ Elements

iterations. Each iteration will use one of the three values in the vector for
the DUT stimulus voltage.

8 In the Properties pane, select the adaptor and device to use for the test.
This example uses the nidaq adaptor, and the device is a PCI-6035E.

9 The example hardware configuration uses the card’s analog output
hardware channel 0 to provide the DUT’s stimulus. So select the check box
for this channel. The element will generate signals of 4, 5, and 7.5 volts, so
keep the default output range of [-10.0 10.0].

10 From the Data source list, select the DUTstimulus test vector.

11 Enter a value of 1 for Output rate. You are using a single static value
rather than a sampled waveform, so this is not critical.

12 Enter a value of 1 for Number of times to output data. The card will
hold its last programmed value, so you need to send it only once.

8-6

Test Voltage Regulator Using Data Acquisition Toolbox

The Properties pane now looks like the following figure:

Enabling the DUT with Digital Data
To send a digital enable signal to the DUT, use a digital output element.

1 Select New Test Element > Data Acquisition > Digital Output.

2 Double-click the new Digital Output element in the browser tree, and type
a new name for this element, such as Enable DUT.

3 Click the Test Variables tab.

4 Click the New button to create a new variable. You will create two
variables: one for enabling and one for disabling the DUT.

5 Click the name Var1, and replace it with the text DUTenable.

8-7

8 Use Data Acquisition Toolbox™ Elements

6 Click its empty Initial Value entry, and enter 1.

7 Repeat steps 4 to 6 to create a second test variable, but name it DUTdisable
with an initial value of 0.

8 In the Properties pane for the Enable DUT element, select the adaptor
and device for sending this data. Again, you are using the nidaq adaptor,
and the device is a PCI-6035E.

9 The hardware configuration uses the card’s digital output port 0, line 3 for
the enable signal, so select the check box for this line.

10 From the Data source list, select the variable DUTenable.

The Properties pane now looks like the following figure:

8-8

Test Voltage Regulator Using Data Acquisition Toolbox

Receiving Analog Response Data from the DUT
The next element in the test samples the output from the DUT and assigns
the acquired data to a test variable.

1 Select New Test Element > Data Acquisition > Analog Input.

2 Double-click the new Analog Input element in the browser tree, and enter
a new name for this element, such as DUT Response.

3 In the Properties pane, select the adaptor and device to use for the test.
This example uses the nidaq adaptor, and the device is a PCI-6035E.

4 The hardware configuration uses the card’s analog input hardware
channel 3 to read the DUT’s response, so select the check box for this
channel. The expected signal will be about 5 volts, so keep the default
output range of [-10.0 10.0].

5 Set a sample rate of 22000. Because of hardware limitations, the actual
sample rate may not exactly match the value you specify.

6 In the Acquire field, specify to acquire data for 2 seconds. Set seconds in
the unit list to the right of the value field.

7 In the Assign data to field, select New Test Variable from the list. This
is where you specify what test variable to assign the acquired data to. The
Edit dialog box appears.

8-9

8 Use Data Acquisition Toolbox™ Elements

8 Enter a name for the test variable, such as DUTresponse, then click OK
to create the test variable.

The Properties pane now looks like the following figure:

Disabling the DUT with Digital Data
The next step is to disable the DUT with a digital output element that turns
off the DUT’s enable line. This element is similar to the Enable DUT element,
except it sends a different value to the DUT.

8-10

Test Voltage Regulator Using Data Acquisition Toolbox

1 Select New Test Element > Data Acquisition > Digital Output.

2 Double-click the new Digital Output element in the browser tree, and
enter a new name for this element, such as Disable DUT.

You already created the test variable DUTdisable, which you will use in
this element.

3 In the Properties pane for the Disable DUT element, select the adaptor
and device for sending this data. Again, you are using the nidaq adaptor,
and the device is a PCI-6035E.

4 The hardware configuration uses the card’s digital output port 0, line 3 for
the enable signal, so select the check box for this line.

5 From the Data source list, select the variable DUTdisable.

8-11

8 Use Data Acquisition Toolbox™ Elements

The Properties pane now looks like the following figure:

Performing Data Analysis
At this stage, you might perform any analysis or visualization routines on the
data generated by the DUT. You can do this in a MATLAB element.

1 Select New Test Element > MATLAB.

2 Double-click the new MATLAB element in the browser tree, and enter a
new name for this element, such as Process Data.

3 In the MATLAB Script edit field of the Properties pane, enter any
MATLAB code that you need for analyzing your test variables. You
might be interested in measuring ripple, noise, regulation, or many other

8-12

Test Voltage Regulator Using Data Acquisition Toolbox

characteristics. You can access the DUT response by referring to the test
variable DUTresponse. The stimulus data is available in the test variable
DUTstimulus.

The following figure shows a MATLAB element with only some comments
added in the Properties pane.

Defining Post Test Elements
In this example, it is recommended to include an element in the Post Test
section to disable the DUT.

1 Click the Post Test section in the browser tree.

2 Create a digital output element set up like the element you made in
“Disabling the DUT with Digital Data” on page 8-10.

8-13

8 Use Data Acquisition Toolbox™ Elements

With the extra Disable DUT element, the test now looks like the following
figure:

The Post Test section of the test could also perform any analysis that requires
completion of all the iterations of the Main Test.

Saving and Viewing Test Results
Before running a test, you must specify which test variables you want to save
as a test result. In the Save Results Properties pane, you select the test
variable that you want to save and map it to a test result name.

The SystemTest software allows you to view the results you have chosen to
save for your test using a workspace variable called stresults. It provides
access to the test results object, which is useful for comparing the results of
separate test runs and for postprocessing test results. For more information,
see “View Test Results at the Command Line” on page 11-2.

8-14

9

Use the Image Acquisition
Toolbox Element

The Image Acquisition Toolbox software includes a SystemTest element that
you can use to bring live video data into a SystemTest test.

• “Image Acquisition Toolbox Element” on page 9-2

• “Acquire Test Data Using Image Acquisition Toolbox Element” on page 9-3

9 Use the Image Acquisition Toolbox™ Element

Image Acquisition Toolbox Element
The Image Acquisition Toolbox element, called Video Input, provides a way
to acquire live video data in a SystemTest test. You can use this element
along with the other elements in the SystemTest software to create tests for
Simulink models and other applications.

To learn how to use the Image Acquisition Toolbox element in the SystemTest
software, see “Acquire Test Data Using Image Acquisition Toolbox Element”
on page 9-3.

Note To use the Image Acquisition Toolbox element, you need a license for
the Image Acquisition Toolbox software. The Video Input element will not
appear in the SystemTest software if you do not.

9-2

Acquire Test Data Using Image Acquisition Toolbox Element

Acquire Test Data Using Image Acquisition Toolbox
Element

In this section...

“Add Video Input Element to a Test” on page 9-3

“Save and View Test Results” on page 9-8

“Run the Test” on page 9-9

Add Video Input Element to a Test
This example illustrates how to use the Video Input element in the
SystemTest software. The example uses the Video Input element to acquire
a single frame of video for each iteration of the test and uses the MATLAB
element to display the acquired image.

The first step is to add the element, as shown in this section. The two
following sections contain the remaining steps.

To create a test using the Video Input element:

1 Open the SystemTest software by typing systemtest at the MATLAB
command line.

2 In the SystemTest desktop, start to create your test by selectingMain Test
and adding the Video Input element. In the Test Browser, click New
Test Element > Image Acquisition > Video Input.

9-3

9 Use the Image Acquisition Toolbox™ Element

The SystemTest software adds the Video Input element to the Main Test
section of the test and displays the Properties pane for the Video Input
element. (You can also add elements to the Pre Test or Post Test sections of
a test but this example does not require it.)

In the following figure, note the red x in the Video Input element icon in
the Test Browser. This red x indicates that the element is in an error
state. The SystemTest software outlines the required fields in red in the
Properties pane.

9-4

Acquire Test Data Using Image Acquisition Toolbox Element

3 Specify the device you want to use to acquire image data in the Properties
pane for the Video Input element. You must specify the name of the
adaptor you want to use in the Adaptor field, which is a required field.
(The SystemTest software uses red outlining to indicate required fields
that are not filled in yet.) The SystemTest software can detect any image
acquisition devices supported by the Image Acquisition Toolbox software
that are connected to your system and fills in this field with a default
value based on the alphabetical list of devices, if one is available. For our
example, in the figure, the SystemTest software sets the Adaptor field to
winvideo. If your system has other adaptors that can connect to devices,
select the adaptor that you want to use from the Adaptor list.

After the Adaptor field is set, the SystemTest software fills in the Device,
Video Format, and Selected Source fields with default values. The
SystemTest software populates the drop-down lists associated with each
field with all available options for the field. Adaptors can support multiple

9-5

9 Use the Image Acquisition Toolbox™ Element

devices and devices can support multiple formats. The SystemTest
software preselects the default values for these fields but lists all available
options in the drop-down lists associated with these fields. The following
figure shows the list for the Video Format field:

4 Specify the number of frames you want to acquire at each iteration of the
test in the Number of frames field, which is a required field. For this
example, we only need to acquire one frame for each iteration, so set this
field to 1.

5 Specify the name of the SystemTest test variable that the acquired video
data will be assigned to at each iteration. This is a required field. You can
select a test variable from the list or create a new test variable by selecting
New Test Variable.

9-6

Acquire Test Data Using Image Acquisition Toolbox Element

If you select New Test Variable, the SystemTest software opens the Edit
dialog box. Assign a name to the test variable, or accept the default name,
and click OK. You do not need to assign the test variable an initial value.

The SystemTest software adds the new test variable to the list in the Test
Variables pane.

6 Optionally, verify the Video Input element settings by clicking the Preview
Window button. The SystemTest software opens a Video Preview window
and displays a live video stream from your camera. You can use this to
verify that your hardware is configured correctly. You should close the
preview window before running the test.

7 To complete this example test, add a MATLAB element to the Main Test
section. In this MATLAB element, call the MATLAB image function to
display the image frame acquired at each iteration.

9-7

9 Use the Image Acquisition Toolbox™ Element

This completes this example test illustrating how to incorporate image data
into the SystemTest software. In a real testing application, you can define
test vectors that determine the number of iterations of your test that the
SystemTest software performs. You can also compare test variables against
defined limits in the Limit Check element and specify pass/fail criteria.

Save and View Test Results
Before running a test, you must specify which test variables you want to save
as a test result. In the Save Results Properties pane, you select the test
variable that you want to save and map it to a test result name.

9-8

Acquire Test Data Using Image Acquisition Toolbox Element

The SystemTest software allows you to view the results you have chosen to
save for your test using a workspace variable called stresults. It provides
access to the test results object, which is useful for comparing the results of
separate test runs and for postprocessing test results.

For more information, see “View Test Results at the Command Line” on page
11-2.

Run the Test
To run the test, do one of the following:

• Click the Run button.

• Select Run > Run.

• Press the F5 key.

While the test executes, the SystemTest software reports on the progress
of the test in the Run Status pane.

9-9

9 Use the Image Acquisition Toolbox™ Element

9-10

10

Distributing Tests Using
Parallel Computing Toolbox
Integration

• “SystemTest Software and Parallel Computing Toolbox Integration” on
page 10-2

• “Enable Distributed Testing” on page 10-3

• “Select a User Configuration” on page 10-5

• “Set Up File Dependencies” on page 10-7

• “Set Up Path Dependencies” on page 10-9

• “Distribute Iterations Across Tasks” on page 10-12

• “Run a Distributed Test” on page 10-14

• “Distribute a Test” on page 10-17

10 Distributing Tests Using Parallel Computing Toolbox™ Integration

SystemTest Software and Parallel Computing Toolbox
Integration

You can distribute SystemTest tests across multiple computers or processors.
You can set up a test and then distribute Main Test iterations as tasks, which
are performed concurrently by different workers. This can help speed up the
total time the test takes to execute.

Note To distribute tests in the SystemTest software, you need a license for
the Parallel Computing Toolbox software.

You set up a distributed test as you would set up any test, using the
SystemTest desktop. Then you use the Distributed tab on the Test
Properties pane to set up the test distribution.

To access the distributed testing functionality in the SystemTest software, do
one of the following:

• Select your test name in the Test Browser. This is the top node in the
Test Browser, that lists the name you give the test when you save it, or
“Untitled,” if you have not saved it yet. Then click on the Distributed
tab in the Test Properties pane.

• Select Tools > Distributed Testing on the SystemTest menu. This opens
the Distributed tab.

Note that if you do not have the Parallel Computing Toolbox software
installed, the tab displays a message indicating you cannot use the distributed
testing functionality.

Note To see a diagram that shows how distributed testing with the
SystemTest software works and illustrates the relationship between the
SystemTest software, the scheduler, and the workers, see “Run a Distributed
Test” on page 10-14.

10-2

Enable Distributed Testing

Enable Distributed Testing
You must select the Enable Distributed Testing check box to distribute a
test. Once enabled, the rest of the fields on the Distributed tab are activated.

The check box is not enabled by default on new tests. However, once you
have set up a distributed test, if you save and close a test with the check box
enabled, it will reload in the enabled state.

The Main Test node on the Test Browser indicates if your test is set up to
be distributed. For example, if you have a distributed test containing 60
iterations, the node displays Main Test (60 Iterations) – Distributed, as
shown in the following figure.

10-3

10 Distributing Tests Using Parallel Computing Toolbox™ Integration

10-4

Select a User Configuration

Select a User Configuration
You or an administrator must set up a user configuration in the Parallel
Computing Toolbox software before distributing tests in the SystemTest
software. The user configuration determines certain administrative options,
such as what scheduler is used. You can use the MathWorks job manager
that comes with MATLAB Distributed Computing Server™, and the local
scheduler that comes with the Parallel Computing Toolbox software. You can
also use a third-party scheduler, such as Windows CCS, Platform Computing
LSF, mpiexec, or a generic scheduler.

In the User Configuration field on the Distributed tab, select the user
configuration that will be used when you distribute tests.

• The Default option indicates the configuration that is designated as the
default in the Parallel Computing Toolbox software. The name of the
configuration appears in parentheses.

• If you have any other configurations defined, they will appear in the
drop-down list under Default. Either use the default, or click the second
radio button and choose a user configuration from the list.

10-5

10 Distributing Tests Using Parallel Computing Toolbox™ Integration

In the following example, this user has several different schedulers and has
a separate user configuration for each scheduler. In this example, the user
configurations are named for the schedulers they use.

User configurations contain other information in addition to scheduler
selection, and are used to define other distributed computing parameters. See
Programming with User Configurations in the Parallel Computing Toolbox
documentation for details on setting up the user configuration.

If you load a test containing a user configuration that no longer exists, this
option will be in an error state. You can correct the error by selecting a valid
user configuration.

10-6

Set Up File Dependencies

Set Up File Dependencies
Use the File Dependencies table to indicate files or folders of files to be
copied to the worker machines. If the worker machines need to access
files that your test is dependent on, you can add the names of the files or
directories of files as dependencies in the SystemTest software and they will
be copied to each worker.

Note: There is overhead in copying files for each task. If there are files that
can be accessed from a shared location by the worker machines, use Path
Dependencies instead. For example, if you use a Simulink element that
references a large model available from a shared network folder, you should
set a path dependency to the directory containing your model.

File dependencies can be defined in the File Dependencies table, as
described below, or can be defined in the user configuration that is set up in
the Parallel Computing Toolbox software. If there are any file dependencies
specified by the currently selected user configuration, they will also be listed
in this table, but will appear in italics and are not editable here. File names
you enter through the SystemTest software appear in regular text and are
editable here.

To set up a file dependency:

1 Click the File Dependencies tab within the Distributed tab.

2 Double-click the entry row in the table (the top row).

The row becomes a text field.

3 Do either:

• Type the full path and file or folder name in the field, and then press
Enter.

• Click the browse button in the entry row, browse to the file or folder,
then click Open in the browse dialog box.

The dependency you entered then appears as a new row in the list.

10-7

10 Distributing Tests Using Parallel Computing Toolbox™ Integration

The example below shows file dependencies for a MATLAB code file and a
small model to be copied to the worker machines.

If you want to delete a file dependency, select it and click the Delete button.
You can delete only dependencies added in the SystemTest software. You
cannot delete any that are specified by the user configuration.

10-8

Set Up Path Dependencies

Set Up Path Dependencies
Use the Path Dependencies table to indicate directories to be added to the
workers’ MATLAB path. If the worker machines need to access certain files
during the test, you can add the directories here. These directories are added
to the workers’ MATLAB path such that the necessary files can be located.
For example, if you use a Simulink element that references a large model
available from a shared network folder, you should set a path dependency to
the directory containing your model.

Note: If there are files that cannot be accessed from a shared location, use
File Dependencies instead.

You can enter path dependencies in the Path Dependencies table, as
described below, or in the user configuration that is set up in the Parallel
Computing Toolbox software. If there are any path dependencies specified
by the currently selected user configuration, they will also be listed on this
tab, but will appear in italics and are not editable in the SystemTest software.
Paths you enter through the SystemTest software appear in regular text
and are editable here.

To set a path dependency:

1 Click the Path Dependencies tab within the Distributed tab.

2 Double-click the entry row in the table (the top row).

The row becomes a text field.

3 Do either:

• Type the path in the field, and then press Enter.

• Click the browse button in the entry row, browse to the directory, then
click Open in the browse dialog box.

The dependency you entered then appears as a new row in the list.

10-9

10 Distributing Tests Using Parallel Computing Toolbox™ Integration

In the following example, because the model is very large the user set up a
path dependency for the directory containing the model that the test uses.

Notice in this example that the path is listed twice, once in Windows® format
and once in UNIX® or Linux® format. If you have a heterogeneous cluster
that contains both Windows and UNIX or Linux worker machines, you need
to add the path twice so that all workers can use it.

10-10

Set Up Path Dependencies

Note Path dependencies must be listed in the format supported by the type
of worker machines the cluster contains, as shown in the previous figure
(which shows both styles). Also, for Windows machines that cannot be directly
accessed by all the workers, you need to specify the path as a UNC path.

If you want to delete a path dependency, select it and click the Delete button.
You can delete only dependencies added in the SystemTest software. You
cannot delete any that were specified by the user configuration.

10-11

10 Distributing Tests Using Parallel Computing Toolbox™ Integration

Distribute Iterations Across Tasks
The Distribution of main test runs across tasks option on the
Distributed tab determines the distribution of Main Test iterations into
tasks that the workers perform. The calculation is based on the total number
of iterations your test contains.

By default, the Default option is selected and the text in parentheses
shows the number of iterations per task and number of tasks. The default
is calculated by dividing the number of iterations in your test by 32 (an
approximation based on a setup of 8 workers, with a target of 4 tasks per
worker), and using the closest number to that. For example, if your test
has 90 iterations, the default will be 3 iterations per task and 30 tasks, as
shown below.

If you run your test and this does not seem efficient, you can change the
number of iterations per task and number of tasks. To change it:

1 Select the second option. The number field becomes editable.

2 Enter the number of iterations per task you want to use.

10-12

Distribute Iterations Across Tasks

3 Press Enter.

The number of tasks is then calculated (total number of iterations divided
by number of iterations per task) and shown in parentheses. For example,
if you had the same test with 90 iterations, but changed iterations per
task to 6, you get 15 tasks.

10-13

10 Distributing Tests Using Parallel Computing Toolbox™ Integration

Run a Distributed Test
You run a distributed test as you would run any other test, by clicking the
Run button in the SystemTest toolbar.

When you run a distributed test:

• Pre Test executes once, on the client machine (the machine from which
you run the test).

• Main Test iterations execute on the cluster of worker machines defined
by the user configuration.

• The SystemTest software waits for the distributed test to complete.

• If there are errors when the distributed test iterations run, only the first
error from the tasks will be reported to the Run Status pane in the
SystemTest software once all tasks have completed.

• At the end of each Main Test iteration, test results are saved and returned
to the client machine once all Main Test iterations have finished executing.

Note Because Main Test iterations run across a number of tasks, there is
no guarantee as to the order the tasks (Main Test iterations) will execute.
Tests should not be written with the assumption that iterations will execute
in a fixed order.

Also, because Pre Test runs on the client machine, and tasks run independent
of each other, Main Test iterations should not rely on data persisting across
multiple iterations.

• Post Test executes once on the client machine, after Main Test executes or
has errored while running.

• Test execution reports are generated at the end of the test, if enabled by
the test.

• Generated plots are not shown on the client machine while the test
runs, but are captured and displayed in the Test Report. Note that plots
generated on worker machines will only reflect information generated as
part of the task. Plotting multiple data points or lines on a single plot will

10-14

Run a Distributed Test

only reflect the data pertaining to iterations executed as part of a single
task.

Note that MATLAB and the SystemTest software remain in a busy state until
the distributed test is done running or is stopped.

Caution It is recommended that you do not run a test containing
hardware-related elements in distributed mode. That includes the Image
Acquisition Toolbox element, the Data Acquisition Toolbox elements, and the
Instrument Control Toolbox elements. These elements will likely error out
because the connected hardware will not be available on the workers.

The following diagram illustrates the relationship between the SystemTest
software, the scheduler, and the workers. Task 1 to Task X and Iteration 1 to
Iteration N are determined by what is shown in the Distribution of main
test runs across tasks section in the Distributed tab. For example, if the
Distribution of main test runs across tasks for a test with 90 iterations
is set to Default (3 iterations per task, 30 tasks), that means your test
will execute 3 iterations for each of 30 tasks. In this case, Task 1 might run
iterations 1, 2, and 3, and Task 2 might run iterations 4, 5, and 6, etc.

10-15

10 Distributing Tests Using Parallel Computing Toolbox™ Integration

10-16

Distribute a Test

Distribute a Test
The following general example shows how you can distribute any test you
have created.

You create and set up a distributed test as you would set up any test, using
the SystemTest desktop. If you determine that the test takes a long time to
execute, you may benefit from distributing it. You then use the Distributed
tab on Test Properties to set up the test distribution.

To distribute a test:

1 Select your test name in the Test Browser. Then click the Distributed
tab in the Test Properties pane.

2 Select the Enable Distributed Testing check box to enable distributed
testing and activate the other options on the tab.

3 The SystemTest software uses the user configurations set up in the Parallel
Computing Toolbox software. User configurations identify various settings,
such as which scheduler to use.

In the User Configuration section, keep the default user configuration, or
select the second radio button and choose a different configuration from the
drop-down list.

For more details, see “Select a User Configuration” on page 10-5.

4 If your test is dependent on files, such as models, MATLAB code files, or
MAT-files, in order to execute, you need to specify the dependent files so
that the worker machines can access the files while the test is running.

If there are files that need to be copied onto the worker machines, use the
File Dependencies tab. If there are files available on a shared network
location that need to be accessed by the worker machines, use the Path
Dependencies tab instead. For example, if you use a Simulink element
that references a large model available from a shared network folder, you
should set a path dependency to the directory containing your model.

10-17

10 Distributing Tests Using Parallel Computing Toolbox™ Integration

Enter the necessary file or path dependencies into the respective tabs by
double-clicking the top row in the tables. For more details, see “Set Up File
Dependencies” on page 10-7 and “Set Up Path Dependencies” on page 10-9.

5 The SystemTest software will calculate number of iterations per task
for you, or you can specify that, in the Distribution of main test runs
across tasks section.

Use Default, or change it by selecting the second option, which enables the
number field. Enter the number of iterations per task you want to use and
press Enter or click outside the field.

For details on how these values are calculated, see “Distribute Iterations
Across Tasks” on page 10-12.

6 Run the distributed test as you would run any other test, by clicking the
Run button in the SystemTest toolbar.

For information on what happens when you execute a distributed test, see
“Run a Distributed Test” on page 10-14.

10-18

11

Access Test Results from
MATLAB Command Line

• “View Test Results at the Command Line” on page 11-2

• “Manage Test Results” on page 11-8

• “Access Test Results While Test Is Running” on page 11-15

11 Access Test Results from MATLAB® Command Line

View Test Results at the Command Line

In this section...

“Introduction” on page 11-2

“Accessing the Results Summary” on page 11-2

“Accessing the dataset Array” on page 11-5

Introduction
After you run a test, the SystemTest software will automatically populate the
MATLAB workspace with a variable called stresults. This variable provides
access to the test results object, which is useful for comparing the results of
separate test runs and for postprocessing test results.

Accessing the Results Summary
You access the results using the stresults variable. To see an example, use
the Fault Tolerant Fuel Control System model.

1 To open the model in the SystemTest software, type the following at the
MATLAB command line:

systemtest demosystest_fuelctrl

2 Run the test by clicking the Run button on the SystemTest toolbar.

3 To view the results after the test runs, return to MATLAB and type:

stresults

The test results object looks like the following for the Fault Tolerant Fuel
Control System example:

11-2

View Test Results at the Command Line

The summary shows the number of iterations that ran, the names of the test
vectors included in the test, the saved results you specified in Save Results,
the dataset array, and generated artifacts.

NumberOfIterations reflects how many iterations actually executed when the
test ran. This will match what is reflected in the SystemTest software in the
Main Test node of the Test Browser if all iterations ran. If any iterations
stopped or errored out, this will show only the number that did execute.

TestVectorNames is a 1-by-N string cell array containing the test vector
names. The values are an alphabetical list of test vector names.

SavedResultNames is a 1-by-N string cell array containing the test result
names. The values are an alphabetical list of test result names.

ResultsDataSet is the dataset array storing the test vector and test result
values for each iteration. See “Accessing the dataset Array” on page 11-5 for
information on accessing the test results data.

Artifacts provides links to SystemTest-generated documents, such as the
test report. You can open the report by clicking the link. If your test includes
a model coverage report, that would also be included here.

11-3

11 Access Test Results from MATLAB® Command Line

Note that in the example shown here, the Test Report was enabled before the
test was run, so the link is displayed in the results. By default the report is
not enabled. To see the link to the report in this example (or any test you
run), enable the report before running the test. To enable the report, click on
the test name in the Test Browser, then select the Generate report option
on the Output Files tab of the Properties pane.

Accessing Properties of the Test Results Object
You can see a complete list of test results object properties before looking at
the actual test results data. At the command line, type:

get(stresults)

In the example using the Fault Tolerant Fuel Control System model, you
see the following properties:

In addition to information that is also included in the summary, this includes
derived results names, start time, stop time, tags, user data, and grouping
information.

DerivedResultNames contains values if you created any derived results using
the Test Results Viewer. In the previous example there are no derived results,
so the value is {}. If there were derived results, this property would contain
an alphabetical list of their names.

11-4

View Test Results at the Command Line

StartTime provides the time the test was started in the form of a MATLAB
clock vector.

StopTime provides the time the test was stopped in the form of a MATLAB
clock vector.

TestFile stores the full path and name of the test that generated the test
results. If the test has been saved, the value will contain the full path and
name of the test. If the test has not yet been saved, the value will show only
the test name.

Tag displays any string you specified using the set function. It is a descriptive
string used for labeling purposes. By default, this property is empty.

UserData is a property for storing user data. It is used to store any arbitrary
MATLAB data you would like to associate with the test results object. By
default, this property is empty.

Grouping displays information about grouping of the test vectors. If you
assign any test vectors to groups (using the Grouping tab on the Test
Vectors pane), then the groups are listed here.

Accessing the dataset Array
The ResultsDataSet property contains the test results data in the form of a
dataset array. This is what you set up using the Saved Results node in the
Test Browser. See “Save Test Results” on page 1-31 for more information
on setting up saved results.

To access the test results data:

1 After running a test, use the stresults variable to view the test results
object summary, as described in the previous section.

2 To access the ResultsDataSet property, type:

stresults.ResultsDataSet

or

get(stresults, 'ResultsDataSet')

11-5

11 Access Test Results from MATLAB® Command Line

This returns the test results data in the form of a dataset array.

In the Fault Tolerant Fuel Control System example, a portion of the test
results data looks like this:

In the dataset array, each row represents a test iteration, labeled using the
convention of ['I' + Iteration_Number]. The previous example shows the
first 10 iterations. Test vector values are listed first, in alphabetical order,
as shown, followed by test results, listed in alphabetical order, as shown in
the following figure.

11-6

View Test Results at the Command Line

Notice that this example shows the test vectors list for the last two iterations
(I95 and I96), and the beginning of the display of the test result values. There
are five results, shown in alphabetical order. The display wraps in MATLAB,
so the fifth result is shown after all the iterations for the first four.

In this example, the value for AvgAirFuel is 14.4466 for the first iteration,
11.8858 for the second iteration, etc.

11-7

11 Access Test Results from MATLAB® Command Line

Manage Test Results

In this section...

“Introduction” on page 11-8

“Manage Test Results in Native Format” on page 11-8

“Manage Test Results as a Dataset Array” on page 11-9

“Plot Results Data” on page 11-10

Introduction
After accessing test results data in the form of a dataset array, you can work
with the data in MATLAB. This feature is useful for comparing the test
results data of separate test runs and for postprocessing of test results data.

One advantage to accessing test results data at the command line is that all of
the MATLAB plotting tools are available to use on the test results data. You
can plot the data using any of the plot types MATLAB offers.

Another major use of the datatset array is to quickly see the results when
you use a Limit Check element in your test. You can see whether each
iteration passed or failed, and what the value was.

Manage Test Results in Native Format
You can use indexing to extract data of the dataset in its native format. You
can index by string or value.

For example, you can assign a variable to represent the dataset, then access
one column of the set using that variable. In the case of the Fault Tolerant
Fuel Control System example, it could look like the following.

1 Create a variable to refer to the test results dataset array:

SetA = stresults.ResultsDataSet;

In this example the test results data is assigned to the variable SetA.

11-8

Manage Test Results

2 Specify the desired columns of data by referencing the name of the test
result.

SetA.AvgFuelRate

This indexed into the column called AvgFuelRate.

Note When extracting data in its native format, the test results are always
returned as a cell array.

MATLAB displays the contents of that column of data, as shown in this
example:

The first 10 iterations are shown in the example.

Manage Test Results as a Dataset Array
You can also choose to manage the test results as a dataset array, refining
the data as finely as needed. Suppose you just want to get the average fuel

11-9

11 Access Test Results from MATLAB® Command Line

rate for iterations 4 through 8. Use standard MATLAB indexing, as shown
in the next example:

The value returned represents the average fuel rate for iterations 4 through
8, in the form of a dataset array.

Plot Results Data
To demonstrate plotting results:

1 Open the example in the SystemTest software by typing the following at
the MATLAB command line:

systemtest simple_demo

2 Run the test by clicking the Run button on the SystemTest toolbar.

3 View the results summary using stresults at the command line.

11-10

Manage Test Results

You can see that this test has one test vector for a signal, called signal,
and three saved results. The result for Y is the signal’s value for a given
test run.

Note that in the example shown here, the Test Report was enabled before
the test was run, so the link to the report is displayed in the results. By
default the report is not enabled. To see the link to the report in this
example (or any test you run), enable the report before running the test. To
enable the report, click on the test name in the Test Browser, then select
the Generate report option on the Output Files tab of the Properties
pane.

4 Look at the test results dataset by typing the following:

stresults.ResultsDataSet

The first 10 iterations are shown here:

11-11

11 Access Test Results from MATLAB® Command Line

You can see the test vector signal followed by the three results, including
the one of interest in this example, Y.

5 Create a variable called SetB for the results dataset for ease of use in
working with the data.

SetB = stresults.ResultsDataSet;

6 Create variables for the signal (the test vector) and the Y test result.

signalA = SetB.signal;
VarA = SetB.Y;

7 Plot the signal. Because Y represents the current value of the signal for
each iteration of the test, plotting the signal against Y shows the values
of the signal throughout the test.

plot([signalA{:}], [VarA{:}])

The plot command produces a line plot, as shown here. You can use any
type of plot that MATLAB offers.

11-12

Manage Test Results

To use another plot type, such as a scatter plot, replace the plot command.

scatter([signalA{:}], [VarA{:}])

11-13

11 Access Test Results from MATLAB® Command Line

11-14

Access Test Results While Test Is Running

Access Test Results While Test Is Running
While a test is executing in the SystemTest software, you can access test
results using the systest.testresults.getCurrent method.

The getCurrent function is intended to be used in a MATLAB element within
the Pre Test, Main Test, or Post Test sections of a TEST-File, in order to
access test information or test results during test execution.

This is a function of the systest.testresults class, which is the class
definition for a test results object, allowing you to access test results from
MATLAB.

The following example used in a MATLAB element will allow you to access
the test results object while the test is executing. You can query the
ResultsDataSet property to access the underlying test data that is currently
available.

obj = systest.testresults.getCurrent;
currentResults = obj.ResultsDataSet;

11-15

11 Access Test Results from MATLAB® Command Line

11-16

12

Function Reference

addArtifact

Purpose Add artifact to test results object

Syntax addArtifact(obj, name, filepath)

Description addArtifact(obj, name, filepath) adds an artifact to the
test results object obj using the string name, representing a
user-customizable display name, and the string filepath, representing
the full file path to the artifact.

This function is a convenience for adding additional artifacts to the
Artifacts property of the test results object obj.

Artifacts can be any document or report associated with a test results
object. By associating artifacts with a test results object, hyperlinks are
automatically provided to access the artifacts when the test results
object is displayed at the MATLAB command line.

This is function of the systest.testresults class, which is the class
definition for a test results object, allowing you to access test results
from MATLAB.

How To • “View Test Results at the Command Line” on page 11-2

12-2

getCurrent

Purpose Access test results object from SystemTest TEST-File

Syntax obj = systest.testresults.getCurrent

Description obj = systest.testresults.getCurrent returns obj, the test results
object associated with the currently running SystemTest test file.

If no TEST-File is currently executing, obj is returned as [].

The getCurrent function is intended to be used in a MATLAB element
within the Pre Test, Main Test, or Post Test sections of a TEST-File, in
order to access test information or test results during test execution.

This is a function of the systest.testresults class, which is the class
definition for a test results object, allowing you to access test results
from MATLAB.

Examples The following code example used in a MATLAB element will allow
you to access the test results object while the test is executing. The
ResultsDataSet property can be queried in order to access the
underlying test data that is currently available.

obj = systest.testresults.getCurrent;
currentResults = obj.ResultsDataSet;

How To • “View Test Results at the Command Line” on page 11-2

12-3

getInfo

Purpose List of available Segment type classpaths

Syntax INFO = systest.signals.segments.getInfo()

Description INFO = systest.signals.segments.getInfo() returns a cell array
of strings representing the fully qualified classpaths of each available
segment type.

From the list of classpaths, more information can be learned by calling

getDisplayName()
getParameterInfo()

Examples Get type / parameter info about the first Segment.

classes = systest.signals.segments.getInfo
eval(sprintf('%s.getDisplayName()', classes{1}))
eval(sprintf('%s.getParameterInfo()', classes{1}))

How To • “Programmatic Test Case and Signal Authoring” on page 5-56

12-4

getSignal

Purpose Signal mapped to signal name

Syntax MAPPEDSIGNAL = getSignal(OBJ, SIGNALNAME)
OBJ.SIGNALNAME

Description MAPPEDSIGNAL = getSignal(OBJ, SIGNALNAME) Gets the signal object
currently mapped to the SIGNALNAME in this TestCase OBJ.

OBJ.SIGNALNAME is an alternative syntax.

If SIGNALNAME is not an existing name an error will be thrown.

Examples Get a signal using getSignal().

testCase = systest.TestCase('Test Case 1');
testCase.In1 = systest.signals.Signal('Step');
getSignal(testCase, 'In1')

Get a signal using getSignal() to get all signals.

testCase1 = systest.TestCase('Test Case 1');
testCase1.In1 = systest.signals.Signal('Step');

testCase2 = systest.TestCase('Test Case 2');
testCase2.In1 = systest.signals.Signal('Ramp');

testCases = [testCase1 testCase2];

getSignal(testCases, 'In1')

Get a signal by referencing its name space using ’.’ syntax.

testCase = systest.TestCase('Test Case 1');
testCase.In1 = systest.signals.Signal('Step');
testCase.In1

How To • “Programmatic Test Case and Signal Authoring” on page 5-56

12-5

horzcat

Purpose Horizontally concatenate one to many TestCase Objects

Syntax TESTCASES = horzcat(VARARGIN)

Description TESTCASES = horzcat(VARARGIN) horizontally concatenates one to
many scalar or arrays of systest.TestCase objects for the overloaded
function systest.TesCase/horzcat .

All TestCase objects must have unique names.

When creating an array of TestCases, the SignalNames property will
be updated to ensure all TestCases have the same SignalNames. If a
TestCase does not have a SignalName that another TestCase does, then
it will be updated to map to the same Signal as the other TestCase.

Examples Create a 1 x 3 list of TestCase objects.

tc1 = systest.TestCase('Test Case 1', 'In1');
tc2 = systest.TestCase('Test Case 2', 'In2');
tc3 = systest.TestCase('Test Case 3', 'In3');

testCases = [tc1 tc2 tc3]

testCases(2)

How To • “Programmatic Test Case and Signal Authoring” on page 5-56

12-6

isSignal

Purpose Check if signal name is mapped

Syntax RESULT = isSignal(OBJ, SIGNALNAME)

Description RESULT = isSignal(OBJ, SIGNALNAME) returns true if SIGNALNAME
is an existing mapping in the given TestCase OBJ.

Examples Create a test case; create two signals within the test case – In1, which
is a step, and In2, which is a ramp. Verify that In1 is mapped.

testCase = systest.TestCase('Test Case 1');
testCase.In1 = systest.signals.Signal('Step');
testCase.In2 = systest.signals.Signal('Ramp');

result = isSignal(testCase, 'In1')

How To • “Programmatic Test Case and Signal Authoring” on page 5-56

12-7

removeSignal

Purpose Remove mapped signal

Syntax OBJ = removeSignal(OBJ, SIGNALNAME)

Description OBJ = removeSignal(OBJ, SIGNALNAME) removes the SIGNALNAME
from the mappings in OBJ and returns the updated TestCase OBJ. OBJ
may be a scalar TestCase object or an array.

If SIGNALNAME is not an existing name an error will be thrown.

Examples Create a test case; create signals In1 and In2; remove signal In1.

testCase = systest.TestCase('Test Case 1');
testCase.In1 = systest.signals.Signal('Step');
testCase.In2 = systest.signals.Signal('Ramp');

testCase = removeSignal(testCase, 'In1');

How To • “Programmatic Test Case and Signal Authoring” on page 5-56

12-8

renameSignal

Purpose Rename mapped signal to new name

Syntax OBJ = renameSignal(OBJ, oldSignalName, newSignalName)

Description OBJ = renameSignal(OBJ, oldSignalName, newSignalName)
changes the mapping of OLDSIGNALNAME to NEWSIGNALNAME
and returns the updated TestCase OBJ.

Examples Create a test case; create signal In1; rename signal In1 to signal In2.

testCase = systest.TestCase('Test Case 1');
testCase.In1 = systest.signals.Signal('Step');

testCase = renameSignal(testCase, 'In1', 'In2')

How To • “Programmatic Test Case and Signal Authoring” on page 5-56

12-9

setDataType

Purpose Update data type for signal

Syntax OBJ = setDataType(OBJ, SIGNALNAME, NEWDATATYPE)

Description OBJ = setDataType(OBJ, SIGNALNAME, NEWDATATYPE) sets the data
type of SIGNALNAME in all TestCase OBJs to NEWDATATYPE.

Examples Change In1 to be single data type.

testCase = systest.TestCase('Test Case 1', 'In1');
testCase = setDataType(testCase, 'In1', 'single');

How To • “Programmatic Test Case and Signal Authoring” on page 5-56

12-10

setSignal

Purpose Assign signal to signal name

Syntax OBJ = setSignal(OBJ, SIGNALNAME, SIGNALOBJ)
OBJ.SIGNALNAME = SIGNALOBJ

Description OBJ = setSignal(OBJ, SIGNALNAME, SIGNALOBJ) maps the
SIGNALOBJ to SIGNALNAME and returns the object TestCase OBJ.

OBJ.SIGNALNAME = SIGNALOBJ is an alternative syntax.

Examples Assign a signal using setSignal().

testCase = systest.TestCase('Test Case 1')
signal = systest.signals.Signal('Constant')
testCase = setSignal(testCase, 'In1', signal)

Assign a signal using "dot" field assignment.

testCase = systest.TestCase('Test Case 1')
signal = systest.signals.Signal('Constant')
testCase.In1 = signal

How To • “Programmatic Test Case and Signal Authoring” on page 5-56

12-11

stLoadTestCases

Purpose Load systest.TestCase objects from SystemTest TEST-file

Syntax testcases = stLoadTestCases(testFile)

Description testcases = stLoadTestCases(testFile) returns the
systest.TestCase object saved in testfile. It returns the list of test
cases in the test file.testfile must be a SystemTest TEST-file (.test)
available on the MATLAB path or specified with a full path.

The function will return empty if the test does not contain a Test Case
Data test vector containing at least one test case. The function will
error if called when the testfile is open in the SystemTest desktop.

Examples Name your test file and model; create a test to that name using that
model; load the test cases.

testFile = 'f14.test';
modelName = 'f14';

systest.createHarness(testFile, modelName);
testCases = stLoadTestCases(testFile)

How To • “Programmatic Test Case and Signal Authoring” on page 5-56

12-12

strun

Purpose Run series of SystemTest test files

Syntax strun(testfile)

Description strun(testfile) runs the SystemTest test file specified by the string
testfile. You can specify testfile as the name of a test file, or as the full
path to a test file. If a test file name is specified without a full path, the
test file must reside on the MATLAB path.

testfile may also be specified as a 1-by-N or N-by-1 cell array of test
files, each of which is run serially.

Running tests that you set up in the SystemTest software from the
MATLAB command line using strun is useful for running multiple test
files as a batch or calling a test file as part of a MATLAB file.

Note If the SystemTest desktop is open when strun is called, strun
leaves it open. Otherwise, strun closes the desktop after the test runs.

strun will run in a synchronous manner, that is, the MATLAB
command line will be blocked until strun finishes executing. strun will
finish executing when either of the following conditions is met:

• All test files have finished executing.

• A Ctrl+C is issued.

When a test is run, it is executed using the settings specified in the
test file.

If only one test file is specified, and the test encounters an execution
error, strun will error. If multiple test files have been specified, a
warning will be issued for any test execution errors, and the remaining
test files will be run.

Note that it is recommend that you run the test from the SystemTest
desktop to verify that elements are not in an error state, and the test

12-13

strun

will run successfully, before running it via the MATLAB command line
using this function.

Note that MATLAB will remain busy while tests are executing via the
strun command. Control is returned to the MATLAB command line
once all tests execute.

Examples Run a test called mytest that is on the MATLAB path.

strun('mytest')

Run a test called mytest that is not on the MATLAB path, but is in
a local directory called c:\work.

strun('c:\work\mytest.test')

Run two tests, called mytest and mytest2, that are both on the
MATLAB path.

strun({'mytest' 'mytest2'})

Run three tests, two of which are on the MATLAB path, and one of
which is not.

strun({'mytest' 'c:\work\mytest2.test' 'mytest3'})

How To • “Run Tests from the MATLAB Command Line” on page 1-10

12-14

stSaveTestCases

Purpose Save systest.TestCase objects from SystemTest TEST-file

Syntax testcases = stSaveTestCases(testFile, testCases)

Description testcases = stSaveTestCases(testFile, testCases) saves
testcases to testfile. testfile must be a SystemTest TEST-file
(.test) available on the MATLAB path or specified with a full path.
testcases must be a 1xN systest.TestCase object.

If there is already a Test Case Data test vector present in testfile,
the test vector will have its test cases overridden by testcases and
testfile will be updated. If there is no Test Case Data test vector in
testfile, then one with the name ’TestCases’ will be created.

This will error if called when the testfile is open in the SystemTest
desktop.

Examples Name your test file and model; create a test to that name using that
model; edit the test cases; save the test cases back to the test.

testFile = 'f14.test';
modelName = 'f14';

systest.createHarness(testFile, modelName);

testCases = systest.TestCase('My Test Case', 'u');
stSaveTestCases(testFile, testCases);

How To • “Programmatic Test Case and Signal Authoring” on page 5-56

12-15

systemtest

Purpose Open SystemTest desktop

Syntax systemtest
systemtest(testfile)

Description systemtest opens the SystemTest desktop with a new untitled test.

systemtest(testfile) opens testfile in the SystemTest desktop, where
testfile is a SystemTest test file (.test) available on the MATLAB path
or specified with a full path.

Examples Open a test called mytest that is on the MATLAB path.

systemtest('mytest')

Open a test called mytest that is not on the MATLAB path, but is in
a local directory called c:\work.

systemtest('c:\work\mytest.test')

12-16

systest.createHarness

Purpose Create SystemTest test harness from model

Syntax systest.createHarness(testFileName,modelName)

Description systest.createHarness(testFileName,modelName) creates a
SystemTest test harness named <testFileName> for the model
<modelName>. The test is set up with a Test Case Data test vector and
a Simulink element using the information from the Simulink model.
The model must be on the MATLAB path. The testFileName must
be a writable file location.

Examples The following example creates a test harness from a model:

>>modelName = 'C:\mymodel.slx';
>>testFileName = 'C:\my_new_harness.test';

>>systest.createHarness(testFileName,modelName)

How To • “Generate Test Harness at the Command Line” on page 6-13

12-17

systest.requirements.createlink

Purpose Create requirements link object

Syntax reqlinkobj=
systest.requirements.createlink(format,location,

linktype,linkvalue)
reqlinkobj= systest.requirements.createlink(reqlinkstruct)

Description reqlinkobj=
systest.requirements.createlink(format,location,linktype,linkvalue)
) creates a requirement link object to the linkvalue in the location
for a given format.

format,location,linktype,linkvalue must be specified as a string.
format and linktype are not case sensitive, but location and
linkvalue are case sensitive.

If linkvalue is a 1xN cell array of strings, then 1xN array of
requirement link objects reqlinkobj will be created.

reqlinkobj= systest.requirements.createlink(reqlinkstruct))
creates a requirement link object from the requirement link MATLAB
structure returned from the Simulink Verification and Validation
toolbox. If reqlinkstruct is a 1xN struct, then a 1xN array of
requirement link objects reqlinkobj will be returned.

reqlinkstruct - Requirement links are represented in MATLAB in a
structure array with the following format:

• reqlinkstruct.description – Requirement description.

• reqlinkstruct.doc – Document name.

• reqlinkstruct.id – Location within the above document.

• reqlinkstruct.keywords – User keywords.

• reqlinkstruct.linked – Indicates if the link should be reported.

• reqlinkstruct.reqsys – Link type registration name.

12-18

systest.requirements.createlink

Note createlink throws an error if DOORS is not installed or open.
createlink throws an error if reqlinkstruct is not a DOORS link.

Examples Create a requirement link object to a DOORS object "1" in the module
"/example/MyModule". Note: DOORS must be running.

reqLinkObj = systest.requirements.createLink

('DOORS', '/example/MyModule' ,'DOORS Object','1')

Create a requirement link object from a requirement link structure
attached to a Signal Builder block in a model. Note: DOORS must be
running.

blockPath = 'mymodel/SignalBuilderBlock/';
reqStruct = rmi('get',blockPath,1);
reqLinkObj = systest.requirements.createLink(reqStruct);

How To • systest.requirements.getInfo

• “Create Requirements Programmatically” on page 5-46

12-19

systest.requirements.getInfo

Purpose Information on supported requirements linking objects

Description formats = systest.requirements.getInfo returns a 1xN cell array
of strings describing the supported formats for which requirement links
can be created.

linktypes = systest.requirements.getInfo(format) returns
information describing the supported linktypes for a given format.
format must be specified as a string. format is not case sensitive.
linktypes is returned as a 1x1 structure containing the following fields:

• SupportedLinkType – A 1xN cell array of strings of linktypes
specific to the specified format.

• AvailableModuleLocations – A 1xN cell array of strings containing
the module locations for the specified format.

info = systest.requirements.getInfo(format,modulelocation)
returns information describing the supported link values in the
modulelocation for a given format. format and modulelocation
must be specified as a string. format is not case sensitive but
modulelocation is case sensitive. info is returned as a 1x1 structure
containing the following fields:

• ModuleID – A string containing the module ID.

• ModuleLocation – A string containing the module location for the
ModuleLocation.

• AvailableObjectIds – A 1xN cell array of strings containing the
object IDs for the specified ModuleLocation.

Examples Find out what requirements in DOORS you can link to in your test case.

listOfLinkSuppor = systest.requirements.getInfo('DOORS');

How To • systest.requirements.createlink

12-20

systest.signals.segments

Purpose Contain supported segment types for creating signals

Syntax segment = systest.signals.segments.(segment_type)

Description segment = systest.signals.segments.(segment_type) creates a
signal with a segment of type segment_type.

The following segment types can be used on the
systest.signals.segments function:

• Constant – A segment with a constant value.

Properties include:

Duration – The length in seconds of the segment.

Value – The constant value of the segment.

• Custom – A segment with user-specified time and data vectors.

Properties include:

Data – User-specified data vector for each time point.

Time – User-specified time vector for each point.

Duration – The length in seconds of the segment.

• Pulse – A segment with a Pulse value.

Properties include:

Duration – The length in seconds of the segment.

InitialValue – The value of the segment before the pulse.

Offset – The length in seconds before the pulse begins.

FinalValue – The value of the segment during the pulse.

PulseWidth – The length in seconds of the pulse.

• Ramp – A segment with a linearly changing value.

Properties include:

Duration – The length in seconds of the segment.

12-21

systest.signals.segments

FinalValue – The value the segment finishes at.

InitialValue – The value the segment starts at.

Offset – The time in seconds before the ramp starts changing.

Slope – The rate of change between InitialValue and FinalValue.

• Sine – A periodic sine wave.

Properties include:

Amplitude – The amplitude of the sine wave.

Duration – The length in seconds of the segment.

InitialValue – The vertical offset of the sine wave.

PeriodLength – The length of time in seconds for a full period.

PhaseShift – The amount in degrees started into the first period.

SampleRate – The amount in seconds between each sampled point.

• Square – A periodic series of pulses.

Properties include:

Amplitude – The amplitude of the square wave.

Duration – The length in seconds of the segment.

DutyCycle – The percentage of time the wave has positive amplitude.

InitialValue – The vertical offset of the square wave.

PeriodLength – The length of time in seconds for a full period.

PhaseShift – The amount in degrees started into the first period.

• Step – A segment that transitions from a one value to another.

Properties include:

Duration – The length in seconds of the segment.

FinalValue – The value of the segment after Offset.

InitialValue – The value the segment before Offset.

12-22

systest.signals.segments

Offset – The time in seconds before the step occurs.

Examples Create a segment of type Constant, with no properties set.

segment = systest.signals.segments.Constant

Create a segment of type Constant with a value of 5.

segment = systest.signals.segments.Constant('Value', 5)

Create a segment of type Custom with a time of 0:99 and data of
rand(1,100).

segment = systest.signals.segments.Custom('Time', 0:99, 'Data', rand(1,100))

Create a segment of type Pulse with an offset of 3 and a FinalValue
of 2.

segment = systest.signals.segments.Pulse('Offset', 3, 'FinalValue', 2)

Create a segment of type Ramp with an offset of 2 and a FinalValue
of 12.

segment = systest.signals.segments.Ramp('Offset', 2, 'FinalValue', 12)

Create a segment of type Sine with an amplitude of 5.

segment = systest.signals.segments.Sine('Amplitude', 5)

Create a segment of type Square with an amplitude of 5.

segment = systest.signals.segments.Square('Amplitude', 5)

Create a segment of type Step with an InitialValue of 4.

segment = systest.signals.segments.Step('InitialValue', 4)

How To • “Programmatic Test Case and Signal Authoring” on page 5-56

12-23

systest.signals.Signal

Purpose Collection of segments used to generate time-based data

Syntax systest.signals.Signal('segment_type')

Description systest.signals.Signal('segment_type') creates a signal with a
segment of type segment_type.

The following properties can be used on the systest.signals.Signal
function:

• DataType – The class of time-based data that will be generated.

• Duration – The ending point of the Time vector.

• ExtrapolationMode – Used to determine Data values after the
endpoint of the last Segmentl.

• Segments – An array of Segment objects inside this Signal.

• Time – The Time vector of the Signal.

• Data – The Data vector of the Signal.

The following static functions can be used with the
systest.signals.Signal function:

• getAvailableExtrapolationModes – Returns a list of valid values
for ExtrapolationMode property.

• getAvailableDataTypes – Returns a list of valid values for DataType
property.

Examples Create a signal with a Step segment followed by a Pulse.

systest.signals.Signal('Step', 'Pulse')

Create a signal with custom user data.

time = [0:.1:10]';
data = rand(length(time), 1);
systest.signals.Signal('Custom', {'Time', time, 'Data', data'}))

How To • “Programmatic Test Case and Signal Authoring” on page 5-56

12-24

systest.TestCase

Purpose Collection of signals for creating time-based data

Syntax testCase = systest.TestCase(test_case_name)

Description testCase = systest.TestCase(test_case_name) is a collection of
signals in the test case test_case_name.

TestCase objects allow you to map signal names to
systest.signals.Signal objects.

Properties is a structure holding all properties of the TestCase. To
access or modify a property of a TestCase object, use the Properties
property.

testCase.Properties.Name = 'New Name;
testCase.Properties.Description = 'My Description;

The following functions can be used on the TestCase object:

• TestCase – Creates a TestCase object.

• isSignal – Checks if a signal name is mapped.

• setSignal – Maps a signal name to a signal.

• getSignal – Gets the signal mapped to a signal name.

• removeSignal – Removes a mapped signal.

• renameSignal – Renames a mapped signal to a new name.

• setDataType – Updates data type for a signal.

• horzcat – Combines TestCases into an array.

Examples The following example creates a test case where the ramp linearly
increases.

Create a test case by specifying the name.

testCase = systest.TestCase('Test Case 1')

Map signal names directly to signal objects.

12-25

systest.TestCase

testCase.In1 = systest.signals.Signal('Constant');
testCase.In2 = systest.signals.Signal('Step');
testCase.In3 = systest.signals.Signal('Ramp');

How To • “Programmatic Test Case and Signal Authoring” on page 5-56

12-26

A

SystemTest Hot Keys

The following keyboard shortcuts are available in the SystemTest software.

Key Description

Alt+N Activates the New button to create a new test
vector or test variable.

F1 Opens Help.

F5 Runs a test.

Ctrl+C While a test is running, stops the test.

Ctrl+C When a test is not running, copies selection in
some parts of the user interface.

Ctrl+N Adds a new untitled test.

Ctrl+O Opens a test.

Ctrl+Q Closes the SystemTest software.

Ctrl+S Saves a test.

Ctrl+V Pastes the copied selection.

Ctrl+W Closes a test.

Ctrl+X Cuts a selection in some parts of the user
interface.

Ctrl+Y Performs redo of last undo action.

Ctrl+Z Performs undo of last action.

Ctrl+0 Gives focus to the Test Browser.

Ctrl+1 Gives focus to the Properties pane.

A SystemTest™ Hot Keys

Key Description

Ctrl+2 Gives focus to the Test Vectors pane.

Ctrl+3 Gives focus to the Test Variables pane.

Ctrl+4 Gives focus to the Resources pane.

Ctrl+5 Gives focus to the Run Status pane.

Ctrl+6 Gives focus to the Desktop Help pane.

Ctrl+7 Gives focus to the Elements pane.

Ctrl+8 Gives focus to the Getting Started pane.

Ctrl+Shift+0 Gives focus to the Plots pane.

Ctrl+Shift+U Undocks the currently selected pane.

Ctrl+Shift+D Docks the currently selected pane.

A-2

B

Test Results Data

• “Dataset Arrays” on page B-2

• “Dataset Array Operations” on page B-5

B Test Results Data

Dataset Arrays

In this section...

“Overview” on page B-2

“Test Results Data” on page B-2

“Looking at Data” on page B-3

Overview
When you run a test, you can view your test results data as a dataset array in
MATLAB. This appendix contains general information on the dataset array
that is the format used for test results that can be accessed in MATLAB. For
more information, see “View Test Results at the Command Line” on page 11-2.

Dataset arrays are used to collect heterogeneous data and metadata including
into a single container variable. Dataset arrays can be viewed as tables
of values, with rows representing different observations and columns
representing different measured variables. Dataset arrays can accommodate
variables of different types, sizes, units, etc.

Note In the SystemTest software, each observation (i.e., row) is used to
represent a test iteration, while each measured variable (i.e., column)
represents a test vector or test result value.

Dataset arrays combine the organizational advantages of basic MATLAB data
types while addressing their shortcomings with respect to storing complex
heterogeneous data.

Dataset arrays have a family of functions for assembling, accessing,
manipulating, and processing the collected data. Basic array operations
parallel those for numerical, cell, and structure arrays.

Test Results Data
MATLAB data containers (variables) are suitable for completely homogeneous
data (numeric, character, and logical arrays) and for completely heterogeneous

B-2

Dataset Arrays

data (cell and structure arrays). Test results data, however, are often a
mixture of homogeneous variables of heterogeneous types and sizes. Dataset
arrays are suitable containers for this kind of data.

Dataset arrays can be viewed as tables of values, with rows representing
different test iterations or cases and columns representing different test
vector and test result values. Basic methods for creating and manipulating
dataset arrays parallel the syntax of corresponding methods for numerical
arrays. Because of the potentially heterogeneous nature of the data, dataset
arrays have indexing methods with syntax that parallels corresponding
methods for cell and structure arrays.

Looking at Data
Dataset arrays in MATLAB are variables created with the dataset
function, and then manipulated with associated functions. In the case of
the SystemTest software, when a test is run, a dataset array is created and
stored as part of a test results object. The test results object is assigned to a
variable named stresults in the MATLAB workspace when the test stops
running. For information on using stresults, see “View Test Results at
the Command Line” on page 11-2.

The following table lists the accessible properties of dataset arrays. Properties
can be configured using the set function, or accessed using the get function.

Dataset
Property

Value

Description A string describing the data set. The default is an empty
string.

Units A cell array of strings giving the units of the variables
in the data set. The number of strings must equal the
number of variables. Strings may be empty. The default is
an empty cell array.

DimNames A cell array of two strings giving the names of the rows
and columns, respectively, of the data set. The default is
{'Observations' 'Variables'}.

UserData Any variable containing additional information to be
associated with the data set. The default is an empty array.

B-3

B Test Results Data

Dataset
Property

Value

ObsNames A cell array of nonempty, distinct strings giving the names
of the observations in the data set. The number of strings
must equal the number of observations. The default is an
empty cell array.

VarNames A cell array of nonempty, distinct strings giving the names
of the variables in the data set. The number of strings
must equal the number of variables. The default is the
cell array of string names for the variables used to create
the data set.

Functions associated with dataset arrays are used to display, summarize,
convert, concatenate, and access the collected data. Examples include disp,
summary, double, horzcat, and get, respectively. Many of these functions
are invoked using operations analogous to those for numerical arrays, and
do not need to be called directly. (For example, horzcat is invoked by [].)
Other functions access the collected data and must be called directly (for
example, replacedata).

Dataset arrays are implemented as MATLAB objects; the associated functions
are their methods. It isn’t necessary to understand objects and methods to
make use of dataset arrays—in fact, dataset arrays are designed to behave as
much as possible like other, familiar MATLAB arrays.

B-4

Dataset Array Operations

Dataset Array Operations
This table lists available methods for dataset arrays. Many of the methods are
invoked by familiar MATLAB operators and do not need to be called directly.
For full descriptions of individual methods, type

help dataset/methodname

Dataset
Method

Description

cat Concatenate dataset arrays. The horzcat and vertcat
methods implement special cases.

dataset Create dataset array.

datasetfun Apply function to each variable of dataset array.

disp Display dataset array, without printing data set name.

display Display dataset array, printing data set name. This
method is invoked when the name of a dataset array is
entered at the command prompt.

double Convert dataset variables to double array.

end Last index in indexing expression for dataset array.

get Get dataset array property.

horzcat Horizontal concatenation for dataset arrays (add
variables). This method is invoked by square brackets.

isempty True for empty dataset array.

join Merge observations from two dataset arrays.

length Length of dataset array.

ndims Number of dimensions of dataset array.

numel Number of elements in dataset array.

replacedata Convert array to dataset variables.

set Set dataset array property value.

single Convert dataset variables to single array.

size Size of dataset array.

B-5

B Test Results Data

Dataset
Method

Description

sortrows Sort rows of dataset array.

subsasgn Subscripted assignment for dataset array. This method is
invoked by the parenthesis, dot, and curly brace indexing.

subsref Subscripted reference for dataset array. This method is
invoked by the parenthesis, dot, and curly brace indexing.

summary Print summary statistics for dataset array.

unique Unique observations in dataset.

vertcat Vertical concatenation for dataset arrays (add
observations). This method is invoked by square brackets.

B-6

Index

IndexA
accessing test results in MATLAB 11-5
accessing test results summary in MATLAB 11-2
adaptors

specifying in Video Input element 9-5
addartifact function 12-2
adding

elements 1-21
Simulink element 4-5
Simulink model 4-7

adding buses 5-29
adding requirements to test cases 5-38
automatically generating a test 6-2
automatically generating a test from

MATLAB 6-13
automatically generating a test from

Simulink 6-4

B
block parameter override 4-7
buses

adding in Test Case Editor 5-29
in Test Case Editor 5-23

buses in Test Case Editor 5-23

C
Command Line Interface

creating signals 5-59
editing test cases 5-58
importing data 5-60
load and save test cases 5-57
Test Case Editor 5-56

command line test running 1-10 12-13
confirmation dialog boxes

turning off 1-8
context menus 1-5
converting deprecated elements 3-24
converting Scalar Plot elements 3-26

converting Vector Plot elements 3-27
create signals via command line 5-59
creating

test variables 1-19
test vectors 1-16

creating signals 5-18
creating test cases 5-13
creating test vectors with probability

distributions 2-20 2-36

D
Data Acquisition Toolbox elements 8-1

example 8-3
dataset array 11-2 11-5
defining

iterations 1-16
deprecated elements 3-24
DerivedResultNames property 11-4
desktop 1-3
Distributed tab 10-2
distributed testing

distributing iterations 10-12
enabling 10-3
example 10-17
file dependencies 10-7
path dependencies 10-9
running distributed test 10-14
schedulers 10-5
tasks 10-12
user configurations 10-5

distributing iterations across tasks 10-12
distributing SystemTest tests 10-2

E
edit test cases via command line 5-58
editing test vectors from within an element 2-79
elements 3-5

adding 1-21 3-5

Index-1

Index

Analog Input 8-9
Analog Output 8-4
converting deprecated 3-24
converting Scalar Plot to General Plot 3-26
converting Vector Plot to General Plot 3-27
Data Acquisition Toolbox 8-1
deprecated 3-24
Digital Output 8-7 8-11
General Plot 3-16
IF 3-15
Image Acquisition Toolbox 9-1
incorrectly configured example 1-25
Instrument Control Toolbox 7-1
invalid characters in names 3-7
Limit Check 3-8 3-12
MATLAB 3-7
Query Instrument 7-11
Simulink 4-1
Stop 3-21
Subsection 3-22
To Instrument 7-5
Video Input 9-3

enabling distributed testing 10-3
examples

adding elements 1-21 3-5
building a test 1-11
creating a test vector 1-16
creating test vector with probability

distributions 2-36
defining test variables 1-19
distributing a test 10-17
General Plot element 1-27
Getting Started 1-11
Image Acquisition Toolbox element 9-3
Instrument Control Toolbox elements 7-2
Inverted Pendulum 4-3
Limit Check element 1-24
mapping Simulink model outputs to test

variables 4-13

MATLAB element 1-23
overriding Inport block signals 4-28
overriding Simulink inport signals 4-12
overriding Simulink model inputs 4-7
Signal Builder 4-38
Simple 1-11
Simulink element 4-5
using Simulink model coverage 4-38
viewing test results 1-44

Excel files
reading into SystemTest 2-46

executing a distributed test 10-14
exponential distribution 2-30
exprnd 2-31

F
file dependencies for distributed testing 10-7
functions

addartifact 12-2
getcurrent 12-3
getInfo 12-4
getSignal 12-5
horzcat 12-6
isSignal 12-7
removeSignal 12-8
renameSignal 12-9
setDataType 12-10
setSignal 12-11
stLoadTestCases 12-12
strun 12-13
stSaveTestCases 12-15
systemtest 12-16
systest.createHarness 12-17
systest.requirements.createlink 12-18
systest.requirements.getInfo 12-20
systest.signals.segments 12-21
systest.signals.Signal 12-24
systest.testCase 12-25

Index-2

Index

G
gamma distribution 2-32
gamrnd 2-32
General Plot element 3-16

using signals from Test Case Editor 5-50
generated files 1-40
generating a test automatically 6-2
generating a test automatically from

MATLAB 6-13
generating a test automatically from

Simulink 6-4
getcurrent function 12-3
getInfo function 12-4
getSignal function 12-5
Getting Started example 1-11
grouped test vectors 2-5
Grouping property 11-4

H
horzcat function 12-6
hot keys 1-6 A-1
HTML log

sample output 1-42

I
IF element 3-15
Image Acquisition Toolbox element

acquiring video data 9-1
example 9-3

image data
importing into a test 9-1

importing data via command line 5-60
Inport Block Mappings Assistant 4-27
Inport blocks 4-36

example of overriding 4-28
overriding 4-23

inport signal override 4-11
Instrument Control Toolbox elements 7-1

example 7-4
integration with Parallel Computing

Toolbox 10-2
invalid characters in element names 3-7
Inverted Pendulum example 4-3
isSignal function 12-7
iterations

defining 1-16
specifying number of frames acquired 9-6

K
keyboard shortcuts A-1

L
limit check

pass/fail 1-30
Limit Check element

example 1-24
General Check 3-8
Tolerance Check 3-12

linking requirements to test cases 5-38
linking requirements to test cases

programmatically 5-46
load and save test cases via command line 5-57
log file

test report 1-34
logged signal override 4-14
lognormal distribution 2-33
lognrnd 2-33

M
Main Test 1-14 3-3
mapping logged signals to Inport blocks 4-36
Mappings Assistant

Inport Block 4-27
Model Output 4-20

MAT-file 1-31
MAT-File test vector 2-14

Index-3

Index

MATLAB command line 1-10 12-13
MATLAB element 3-7

accessing signals from the Test Case
Editor 2-78

example 1-23
example code to access signals from the Test

Case Editor 2-78
MATLAB expression

test vector 1-16
MATLAB Expression test vector 2-2
menus

context menus 1-5
model

adding 4-7
input overrides 4-7

model coverage 4-38
Model Output Mappings Assistant 4-20
most recently used test list 1-8

N
normal (Gaussian) distribution 2-28
NumberOfIterations property 11-3

O
outport signal override 4-16
overriding

block parameter 4-7
inport signal 4-11
logged signal 4-14
model input 4-7
model outputs 4-13
outport signal 4-16
To Workspace block 4-18
workspace variable 4-9

overriding inport block signals 4-22
overriding Inport block signals 4-23

example 4-28

overriding Inports with signals from Test Case
Editor in Simulink element 4-48

P
Parallel Computing Toolbox 10-2
pass/fail 1-30
path dependencies for distributed testing 10-9
plotting signals 5-50
plotting test results 11-10
Post Test 1-14 3-3
Pre Test 1-14 3-2
preferences

confirmation dialog boxes 1-8
Preferences dialog box 1-7
probability distributions 2-20 2-28

exponential 2-30
gamma 2-32
lognormal 2-33
normal (Gaussian) 2-28
T 2-34
uniform 2-29
Weibull 2-35

product elements 1-22 3-6
programmatic requirements linking in test

cases 5-46
properties

DerivedResultNames 11-4
Grouping 11-4
NumberOfIterations 11-3
ResultsDataSet 11-3
SaveResultNames 11-3
StartTime 11-4
StopTime 11-4
Tag 11-4
TestFile 11-4
TestVectorNames 11-3
UserData 11-4

Index-4

Index

R
rand 2-30
randn 2-29
randomized test vectors 2-20
reading Excel files into SystemTest 2-46
refining test results 11-8
removeSignal function 12-8
renameSignal function 12-9
requirements linking in test cases 5-38
Requirements Tab in Test Case Editor 5-41
ResultsDataSet property 11-3
right-click menus 1-5
Run Status 1-38
Run Status pane 1-34
running

distributed test 10-14
test 1-38

running tests from MATLAB command line 1-10
12-13

S
SaveResultNames property 11-3
saving

test 1-36
Scalar Plot element

converting to General Plot 3-26
sections 1-13
setDataType function 12-10
setSignal function 12-11
shortcut keys 1-6
shortcut menus 1-5
Signal Builder Block test vector 2-69 4-47
Signal Builder Blocks 2-69 4-47
Signal Builder example 4-38
signal concatenation 5-23
signal types 5-30
signals

constant 5-30
custom 5-37

pulse 5-34
ramp 5-33
sine 5-36
square 5-35
step 5-32

Simple example 1-11
Simulink Design Verifier 2-55 4-46
Simulink Design Verifier Data File test

vector 2-55 4-46
Simulink element

adding 4-5
block parameter 4-7
description 4-1
inport signal 4-11
logged signal 4-14
mapping logged signals to Inport blocks 4-36
model coverage 4-38
model input overrides 4-7
model output overrides 4-13
model overrides 4-7
outport signal 4-16
To Workspace block 4-18
workspace variable 4-9

Simulink Element
overriding Inports with signals from Test

Case Editor 4-48
Simulink model coverage 4-38
Spreadsheet Data test vector 2-46
starting

SystemTest 1-13
StartTime property 11-4
stLoadTestCases function 12-12
Stop element 3-21
stopping

test 1-38
StopTime property 11-4
stresults command 11-2
strun function 1-10 12-13
stSaveTestCases function 12-15
Subsection element 3-22

Index-5

Index

SystemTest
desktop 1-3
Preferences 1-7
runtime actions 1-38
starting 1-13

systemtest function 12-16
SystemTest hot keys A-1
systest.createHarness function 12-17
systest.requirements.createlink

function 12-18
systest.requirements.getInfo function 12-20
systest.signals.segments function 12-21
systest.signals.Signal function 12-24
systest.testCase function 12-25

T
T distribution 2-34
Tag property 11-4
tasks in distributed testing 10-12
Telelogic® DOORS® 5-38 5-41 5-46
test

analyzing results 1-42
automatically generating 6-2
automatically generating from

MATLAB 6-13
automatically generating from Simulink 6-4
components 1-13
construction workflow 1-13
elements 1-21 3-5
FOR loop 1-16
HTML output 1-34
pass/fail 1-30
planning 1-12
running 1-38
save results 1-31
saving 1-36
Simulink model 4-1
stopping 1-38
test vectors 1-16

variables 1-19
viewing results 1-44

Test Browser
overview 1-4

test case 5-13
Test Case Data Test Vector 2-75 5-6
Test Case Editor 5-2

accessing signals in MATLAB elements 2-78
5-50

adding buses 5-29
authoring signals 5-4
buses 5-23
creating signals 5-18
creating test cases 5-13
Definitions 5-2
Edit View 5-9
Introduction 5-2
linking requirements 5-38
navigating 5-9
overriding Inports with signals in Simulink

element 4-48
Requirements Tab 5-41
signal concatenation 5-23
signal types 5-30
Test Case Data Test Vector 2-75 5-6
test case options 5-17
Test Case Report 5-44
Test Case View 5-9
using 5-4
using signals in General Plot elements 5-50
using signals in Simulink elements 5-49
using signals in test elements 5-49
working in 5-9

Test Case Editor Command Line Interface 5-56
to 5-60

test case options 5-17
Test Case Report 5-44
Test Properties

Distributed 10-2
test report 1-34

Index-6

Index

activating 1-34
iteration results 1-44
sample output 1-42

test results
accessing results data 11-5
accessing summary 11-2
indexing values 11-8
plotting results 11-10
refining dataset 11-8
using 11-8

test results dataset array 11-5
test results summary 11-2
test run options 1-8
test sections 3-2

Main Test 3-3
Post Test 3-3
Pre Test 3-2

test variables
creating 1-19
specifying in Video Input element 9-6

test vector
creating 1-16
workspace variable override 4-9

test vectors
creating 2-2 2-14
editing within element 2-79
grouped 2-5
MAT-File 2-14
MATLAB Expression 2-2
randomized 2-20
Signal Builder Block 2-69 4-47
Simulink Design Verifier Data File 2-55 4-46
Spreadsheet Data 2-46
Test Case Data 2-75 5-6
ungrouped 2-2 2-5
with probability distributions 2-20

TestFile property 11-4
tests

running in SystemTest 9-9
specifying image acquisition device 9-5

TestVectorNames property 11-3
To Workspace block override 4-18
trnd 2-34

U
undo actions 1-6
ungrouped test vectors 2-5
uniform distribution 2-29
user configurations in distributed testing 10-5
UserData property 11-4
using dataset array 11-5
using probability distributions 2-36
using stresults command 11-2

V
Vector Plot element

converting to General Plot 3-27
vectors

grouped 2-5
ungrouped 2-5

video
importing into a test 9-1

Video Input element
running a test 9-9
specifying image acquisition device

properties 9-5
specifying number of frames per iteration 9-6
specifying test variable 9-6
using 9-1

viewing
test results 1-44

viewing test results 11-2

W
wblrnd 2-35
Weibull distribution 2-35
workflow 1-13

in SystemTest 1-11

Index-7

Index

workspace variable override 4-9

Index-8

	toc
	Getting Started
	Product Description
	Key Features

	Overview of the SystemTest Software
	Getting Familiar with the Desktop
	General Desktop Features
	Context Menus
	Hot Keys
	Undo/Redo Support

	Setting Preferences
	Most Recently Used Test List
	Test Run Options
	Confirmation Dialog Boxes

	Viewing Test Results

	Run Tests from the MATLAB Command Line
	Create and Run a Test
	Plan a Test
	Construct a Test
	Start the SystemTest Software
	Structure a Test
	How Test Vectors and Test Variables Relate to the MATLAB Workspa
	Create a Test Vector
	Define Test Variables
	Add Elements
	Define Pass/Fail Criteria
	Save Test Results
	Generate a Test Report
	Save a Test

	Run a Test
	Track Output

	Analyze Test Results
	View the Test Report
	View Test Results

	Working with Test Vectors
	MATLAB Expression Test Vectors
	Grouped Test Vectors
	Test Vectors and the MATLAB Workspace
	MAT-File Test Vectors
	Randomized Test Vectors with Probability Distributions
	Probability Distributions in Test Vectors
	Create a Test Vector with Probability Distributions
	View Data While Configuring the Test Vector
	The Probability Distributions
	Normal (Gaussian)
	Uniform
	Exponential
	Gamma
	Lognormal
	T
	Weibull

	Create Test Vectors with Probability Distributions

	Spreadsheet Data Test Vectors
	Introduction
	Create a Spreadsheet Data Test Vector
	Configure the Spreadsheet Data Test Vector
	Replace Strings

	Simulink Design Verifier Data File Test Vectors
	Prerequisites
	Create SystemTest Harness from Simulink Design Verifier
	Create a Simulink Design Verifier Test Vector
	Important Usage Notes

	Create Signal Builder Block Test Vectors
	Create a Test Case Data Test Vector
	Access Test Case Data Using MATLAB Element
	Edit Test Vector from within an Element

	Constructing a Test
	Test Sections
	Overview
	Pre Test
	Main Test
	Post Test

	Basic Elements
	Elements
	Invalid Characters in Element Names

	MATLAB Element
	Allowed Test Sections
	Properties Pane

	Limit Check Element — General Check
	Allowed Test Sections
	How to Use
	Properties Pane — General Check

	Limit Check Element — Tolerance Check
	Allowed Test Sections
	How to Use
	Properties Pane — Tolerance Check

	IF Element
	Allowed Test Sections
	Properties Pane

	General Plot Element
	Allowed Test Sections
	General Tab
	Plotting Simulink Data
	Options Tab

	Stop Element
	Allowed Test Sections
	Properties Pane

	Subsection Element
	Allowed Test Sections
	Properties Pane

	Deprecated Elements
	Converting Elements
	Scalar Plot Conversion Details
	Vector Plot Conversion Details

	Using the Simulink Element
	Simulink Element
	Before You Begin
	Configuration of a Simulink Element
	Introduction
	Add a Simulink Element
	Specify the Simulink Model
	Override Simulink Model Inputs
	Override Simulink Block Parameters
	Override to Workspace Variables
	Override Simulink Model Inport Signals

	Map Simulink Model Outputs to Test Variables
	Map Simulink Logged Signals to Test Variables
	Map Simulink Outport Signals to Test Variables
	Map Simulink To Workspace Blocks to Test Variables

	Model Output Mappings Assistant
	Edit a Test Vector or Test Variable from within the Element

	Override Inport Block Signals
	Introduction
	Override Inport Block Signals in a Simulink Element
	Inport Block Mappings Assistant
	Override Simulink Inport Blocks Using a Spreadsheet Data Test Ve
	Map Logged Signals from a Model to Inport Blocks
	Edit a Test Vector or Test Variable from within the Element

	Simulink Model Coverage
	Use Simulink Design Verifier Test Cases
	Use Signal Builder Block Test Cases
	Test Cases and Signals in Simulink Element

	Author Signals in the Test Case Editor
	Signal Authoring for Test Data
	Definitions

	Author and Use Signals in Tests
	Create a Test Case Data Test Vector
	Create Test Cases, Signals, and Buses
	Navigate in the Test Case Editor
	Edit View
	Test Case View

	Create Test Cases
	Test Case Options

	Add Signals to Test Cases
	Signal Concatenation

	Buses in the Test Case Editor
	Add Buses to a Test Case

	Signal Types

	Link to Requirements in Telelogic DOORS
	Introduction and Setup
	Add Requirements
	Requirements Tab
	Test Case Report
	Create Requirements Programmatically
	Examples

	Test Cases and Signals in SystemTest Elements
	Introduction
	Simulink Element
	MATLAB Element
	General Plot Element

	Programmatic Test Case and Signal Authoring
	Overview
	Load and Save Test Cases
	Edit Test Cases
	Create Signals
	Import from External Source to Test Case

	Generate a Test Harness from a Model
	Test Harness Generation
	Model Requirements for Test Harness Generation
	Generate a Test Harness from Simulink
	Generate Test Harness at the Command Line

	Use the Instrument Control Toolbox Elements
	Instrument Control Toolbox Elements
	Overview
	Access Resources

	Measure Generator's Frequency Using Instrument Control Toolbox
	Introduction
	Setting Up the Signal Generator
	Setting Up the Oscilloscope
	Taking the Measurement
	Saving Test Results
	Running the Test and Viewing Test Results

	Use Data Acquisition Toolbox Elements
	Data Acquisition Toolbox Test Elements
	Test Voltage Regulator Using Data Acquisition Toolbox
	Introduction
	Sending Analog Stimulus Data to the DUT
	Enabling the DUT with Digital Data
	Receiving Analog Response Data from the DUT
	Disabling the DUT with Digital Data
	Performing Data Analysis
	Defining Post Test Elements
	Saving and Viewing Test Results

	Use the Image Acquisition Toolbox Element
	Image Acquisition Toolbox Element
	Acquire Test Data Using Image Acquisition Toolbox Element
	Add Video Input Element to a Test
	Save and View Test Results
	Run the Test

	Distributing Tests Using Parallel Computing Toolbox Integration
	SystemTest Software and Parallel Computing Toolbox Integration
	Enable Distributed Testing
	Select a User Configuration
	Set Up File Dependencies
	Set Up Path Dependencies
	Distribute Iterations Across Tasks
	Run a Distributed Test
	Distribute a Test

	Access Test Results from MATLAB Command Line
	View Test Results at the Command Line
	Introduction
	Accessing the Results Summary
	Accessing Properties of the Test Results Object

	Accessing the dataset Array

	Manage Test Results
	Introduction
	Manage Test Results in Native Format
	Manage Test Results as a Dataset Array
	Plot Results Data

	Access Test Results While Test Is Running

	Function Reference
	SystemTest Hot Keys
	Test Results Data
	Dataset Arrays
	Overview
	Test Results Data
	Looking at Data

	Dataset Array Operations

	Index

